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Abstract. Due to their convenience and naturalness, hand pose recogni-

tion or gesture recognition methods are gaining attention as an upcom-

ing complement of traditional input devices such as keyboards, mice, 

joysticks, etc. Robust hand detection from an image is the first stage to 

solve the hand gesture recognition. Due to the release of the commer-

cial depth camera, elimination of the cluttered background from a depth 

image is much easier than from a RGB image. However, accurate hand 

segmentation from a human body still remains in challenging task. Here, 

we propose robust real-time hand detection algorithm from a depth im-

age. The algorithm is designed to detect hands with various hand poses 

in various positions in 3D space. We train Radom Decision Forests to 

every pixel in the image to detect hand. The pixel in the image has one 

of the two label, hand or non-hand. We optimize the random decision 

forests parameters by various experimental conditions. The result shows 

that the per-pixel classification accuracy is 94% and the RDF with 5 

trees requires only 12ms with no help of parallel programming. 

Keywords; Hand detection, Decision forests, Hand pose, Gesture 
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1. Introduction

Hand gesture recognition recently has attracted much interest as a means for inter-

action between human and computer in a variety of fields such as games, browser, 

media control, etc. [1, 2, 3]. Implementation of hand gesture recognition system rep-

resents a challenging task and relates to resolution of specific problems involved in 

detection of hand, recognition of hand shapes[4, 5, 6] and hand trajectory classifica-
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tion for recognizing movements of hand, etc. Detection of the hand in image has be-

come easier as the background and foreground separation can be obtained simply 

from depth information due to spread of depth camera that provides depth information. 

However, the detection is still difficult when a hand is on the body or the distance of 

the hand from the camera is further than body position[7]. In this paper, we present a 

robust real-time hand detection method from a single depth image. 

2. Propose Method

To detect the of a hand, Random Decision Forests(RDF) classifier[8, 9] was used. 

The detection problem can be solved as binary classification task. Decision forests 

was intended to classify a hand from a body. RDF can significantly improve individu-

al stability and accuracy RDT as ensemble of Random Decision Tree(RDT). In addi-

tion, RDT itself also has the properties robust to overfitting as it uses the characteris-

tic of data selected randomly. In training phase of the RDF, pixel based feature value 

is used. The extracted feature value by pixel has simple depth comparison characteris-

tics as shown in Eq. 1. When target pixel is given, feature value of concerned pixel is 

as shown in Eq. 1: 
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where, dI(p) is depth value of a pixel, p, in an image, I. Parameter θ=(u,v) indicates two offset 

values from p. Offset is normalized by depth, dI(p), which makes feature value depth invariant. 

Training is to set splitting function of the node in such a way that nodes with simi-

lar class are gathered together when pixel data values that have entered parent nodes 

are distributed to children nodes. Each node split the date to left child node and right 

child node in accordance with the rule specified in Eq. 2 and 3. Before splitting the 

data, candidates of feature value and threshold value are extracted randomly. Then, 

information gain is calculated on every candidates of feature and threshold value (Eq. 

4). The value of the candidate parameters is stored at each node when information 

gain is maximized. Each node uses that as split function in case of testing phase. 
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where, H is Shannon entropy for entire input data of concerned node, and θ=(u,v)  is 
the set of feature value and threshold value which were extracted randomly on each 
node. θ=(u,v) is the offset value as shown in Eq. 1. In training, feature value and 
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threshold value resulting in the highest information gain are stored in each node, 
which applies equally to all nodes. In other words, the objective of training is to store 
both feature value and threshold value maximizing the information gain in respective 
nodes.  

In testing phase, the pixel value of test image is given as input value of trained 

RDF. When this value arrives at final leaf node based on split function of each node, 

the probability of the leaf node can be taken for final classification. By performing 

this for all trees and obtaining the mean value, final classification probability value 

can be calculated asthis for all trees and obtaining the mean value, final classification 

probability value can be calculated as 
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while Pt is the probability value in each tree, and T is the number of trees used in RDF. 

P is final value of probability that estimated class of target pixel is class, c. 

3. Simulation and Resutl

The algorithm is verified on the public dataset [10]. The accuracy is a value of the 

number of correct estimated pixel divided by the number of pixel of hand. Fig. 1 and 

Fig. 2 shows the accuracy on the effect of decision forests parameters. The accuracy 

increases in accordance with tree height. Increasing the tree number has a positive 

effect on accuracy as expected. The resolution of the image is 320. Computation time 

is 12ms without any parallel programming in 2.4GHz CPU. The final result image is 

shown in Fig. 3. 

Figure 1. Per pixel classification accuracy. (a) effect of tree height, (b) effect of 

tree number 

4. Future Work

In this paper, we propose a hand detection method for a single depth image. Per-

pixel classification by random forests gives the label estimation for each pixel in the 
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depth image. For better performance in accuracy, various pose of the hand and vari-

ous location of the hand are required. This detection algorithm can be used the initial 

value of the hand tracking. The detection performance would be better with tracking 

algorithm. 
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Figure 2. Samples of result images. First column is input depth image and sec-

ond column shows the corresponding ground truth label image. The third col-

umn shows the estimated pixel of a hand (red pixel : hand, blud : not hand). 
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