
Journal of Industrial Information
Technology and Application Vol.2 No.2

ISSN(Online) : 2586-0852

Copyright©2018. Journal of Industrial Information Technology and Application (JIITA)

Partitioning Large Graphs using Particle
Swarm Optimization with Breadth First

Search

Srimanth Gadde 1), Robert C. Green II 2,), William Acosta 3), Vijay
Devabhaktuni 1)

1) University of Toledo, Toledo, OH, USA
2) Bowling Green State University, Bowling Green, OH, USA

3) DISH Network, Englewood, CO, USA

Abstract. Processing large graph datasets represents an increasingly im-
portant area in computing research and applications. The size of many
graph datasets has increased beyond the processing capacity of a single
computing node, necessitating distributed approaches. Processing over a
distributed system of nodes leads to an inter-partition communication
cost problem, negatively affecting the system performance. Previously
proposed graph partitioning approaches minimize the inter-partition
communication on large graphs, yet require high computation overhead.
To address this problem, a robust algorithm combining Particle Swarm
Optimization (PSO) with Breadth First Search (BFS) is implemented,
which does not require high computation overhead, reduces the inter-
partition communication, and maximizes intra-partition communication
by achieving an appropriate balance partition. In the first phase (PSO Se-
lection), a core set of vertices are selected and assigned to the computing
nodes. In the second phase, the graph is partitioned by placing the re-
maining nodes through the use of BFS. Experimental results show graph
intra-partition performance for canonical graphs representative of real-
world data is improved up to 50% in case of Powerlaw graph, up to 33%
in case of Random near K-regular graph (with low degree), and up to 16%
in case of Random near K-regular graph (with high degree). (Abstract)

Keywords; graph partitioning; particle swarm optimization; breadth first
search; inter-partition communication

∗ Corresponding author: greenr@bgsu.edu

Received: 2017.9.28; Accepted: 2017.12.5; Published: 2018.6.30

This is an Open Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unre-
stricted non-commercial use, distribution, and reproduction in any medium, provided the original
work is properly cited.

84

Srimanth Gadde, Robert C. Green II, William Acosta, Vijay Devabhaktuni
/ JIITA 2(2)

1. Introduction

Large graph dataset processing has been extensively used for numerous applications
such as social networking analysis, data mining, and web graphs [1, 2]. The graphs
processed in these applications are becoming increasingly large, requiring graph pro-
cessing of millions or even billions of vertices. However, as the size of these datasets
and their computational demands continue to increase, there is a requirement to distrib-
ute the computation beyond a single computer (or CPU). This requirement has given
rise to a set of distributed graph processing systems such as Pregel [3], Trinity [4],
Haloop [5], Priter [6], Piccolo [7], Spark [8], Giraph [9], and others. These frameworks
are designed to process large graph datasets on the distributed system. By employing
these frameworks, various graph-based algorithms are computed to process large graph
datasets on a distributed system. When these datasets are distributed randomly without
partitioning, it increases the vertex-to-vertex communication between the computing
nodes. This eventually leads to an inter-partition communication problem that nega-
tively affects system performance [10]. Many graph algorithms are iterative and require
significant communication between the vertices, thus making them sensitive to
data/vertex placement in the distributed system. The tasks involved in these frameworks
for processing the graph datasets generally include iterative mode operations where all
the vertices/edges are accessed. Examples of these tasks are PageRank (PR) [11], Sin-
gle-Source Shortest Path algorithm (SSSP) [12], etc.

This work presents a new graph partitioning algorithm based on previous work [13]
which does not require high computation overhead and improves system performance
by reducing inter-partition communication through the use of population-based me-
taheuristic algorithms like particle swarm optimization (PSO) that have rarely been
used in the literature [14-16]. The algorithm partitions the graph in two intuitive stages:
Random Selection method and PSO with BFS partitioning. In the first stage, the set of
vertices are selected randomly from the graph, based on the limit value provided, and
these vertices are assigned randomly on the computing nodes. In next stage, these ver-
tices are given as input and BFS is applied on the selected vertices in order to partition
the graph. To ensure the appropriate balance partition, the count of vertices on each
node is checked at each step with a provided cutoff value. This process partitions the
graph entirely without requiring a significant amount of computation overhead. The
proposed algorithm is applied to three types of graph topologies including the Power-
law graph, Random near K-regular graph (with low degree), and Random near K-reg-
ular graph (with high degree). All three graph topologies vary in shape, connections
and structure.

2. Methods

A. Particle Swarm Optimization

PSO was introduced by Eberhart and Kennedy in 1995, is a population-based sto-
chastic optimization technique for determining continuous and discrete optimization
problems. It is influenced by the social behavior of bird flocking and fish schooling, and

85

Srimanth Gadde, Robert C. Green II, William Acosta, Vijay Devabhaktuni
/ JIITA 2(2)

is well-known for solving optimization problems. In PSO, agents called “particles”
travel in the search space to find the optimal solution. The position of each particle lo-
cated inside the search space indicates the potential solution to the optimization problem.
In PSO, the potential solution can be characterized with the particle’s past behavior de-
pending on its position, velocity, and best recorded fitness. Each particle continually
updates its velocity and position dependent upon the particle population behavior in or-
der to derive the best solution to the optimization problem. The formulas for updating
the position and velocity of the PSO algorithm are shown in (1) - (4) where R, V, and M
are the arrays of particles, velocities, and fitness values, p is the current particle, d is the
current dimension, r is a random number, Gbest is the global best, Pbest is the personal
best, c1 is the cognitive constant, c2 is the social constant, and is the constriction
factor.

𝑅,ௗ ൌ 𝑅,ௗ 𝑉,ௗ (1)

𝑉,ௗ ൌ Ψ൫𝑉,ௗ 𝑟𝑐ଵ൫𝑃௦௧,,ௗ െ 𝑅,ௗ൯ 𝑟𝑐ଶሺ𝐺௦௧,,ௗ െ 𝑅,ௗሻ൯ (2)

Ψ ൌ
ଶ.

ቚଶ.ିିሺඥమିସቚ
(3)

Φ ൌ 𝑐ଵ 𝑐ଶ (4)

B. Proposed Method

The proposed method uses the PSO algorithm [17] to partition initial vertices be-
tween nodes in a distributed system. Once the PSO algorithm has assigned the initial
nodes, BFS is used to partition any remaining nodes. This is fundamentally the same
process as used in [13], with the random selection of nodes being replaced by the PSO
algorithm. PSO is initialized using values of xmin= 0, xmax= 32, vmin = 0, vmax = 20, Np =
50, C1 = C2 = 6.05, and Nt=100. As vertices are being placed on computational system
of 32 nodes, each particle has 32 dimensions, each containing an integer which selects
a single, root vertex that is to be assigned to that node. It is this seed node which is used
to run the BFS algorithm. The fitness function used minimizes inter-partition commu-
nication and is shown in (5) where Tsent is the total number of messages sent from all
nodes and Trx is the total messages received within all nodes.

𝑀 ൌ ೞ்

ೝ்ೣ
 (5)

For experimentation, Giraph is chosen as the graph processing framework since it
combines the best features of Pregel and Bulk Synchronous Parallel model. The exper-
iments in this study were performed on a 32-node distributed network for processing
the graph datasets using Giraph framework. Table I shows the intra-partition and inter-
partition communication before partitioning the graph dataset for various graphs. The
presented graph partitioning algorithm was developed in Java jdk1.7.0_03 Enterprise
Edition. It was implemented on an Intel Core i5 with a 2.30 GHz processor and 4.00
GB of RAM, running on the Microsoft Windows 7 Service Pack 1. For testing the al-
gorithm, three types of graph topologies were used: Powerlaw graph (this dataset is
router topology which holds link directions corresponding to the trace route directions),

86

Srimanth Gadde, Robert C. Green II, William Acosta, Vijay Devabhaktuni
/ JIITA 2(2)

a randomly generated Random near K-regular graph (with low degree), and a randomly
generated Random near K-regular graph (with high degree). Specifically the experi-
ments were performed on a Powerlaw graph (with 190,914 vertices, 1,215,102 edges),
Random near K-regular graph with high degree (with 100,000 vertices, 2,500,000 edges)
and Random near K-regular graph with low degree (with 100,000 vertices, 400,000
edges). All trials are run 10 times.

TABLE I. INTRA-PARTITION AND INTER-PARTITION COMMUNICATION IN % USING SSSP AND PR BEFORE
PARTITIONING

SSSP PR

Graph Topology
Intra-partition
communication

Inter-partition
communication

Intra-partition
communication

Inter-partition
communication

Powerlaw 3.7 96.3 3.7 96.3

Random near K-regular
(low degree)

4.1 95.9 3.9 96.1

Random near-K-regular
(high degree)

3.9 96.1 4.0 96.0

3. Results

Table II shows the results of three different graph topologies: Powerlaw graph, Ran-
dom near K-regular graph (with low degree) and Random near K-regular graph (with
high degree). Each table contains the following results performed for 10 trials and each
trial is executed for 100 iterations: the average improved intra-partition communication
and the average reduced inter-partition communication.

In Table II, by using the proposed PSO-based algorithm on the Powerlaw graph, the
average intra-partition communication is improved from 3.7% to 48.9% in the case of
SSSP and from 3.7% to 49.9% in the case of PR. The average inter-partition commu-
nication is reduced from 95.9% to 51.1% in the case of SSSP and from 96.1% to 50.1%
in case of PR. For the Random near K-regular graph (with high degree), the average
intra-partition communication is improved from 3.9% to 16% in the case of SSSP and
from 3.9% to 15.7% in the case of PR. The average inter-partition communication is
reduced from 96.1% to 84.0% in the case of SSSP and from 96.0% to 84% in case of
PR. When using the proposed algorithm with the high degree graph, the average intra-
partition communication is improved from 3.9% to 16% in the case of SSSP and from
3.9% to 15.7% in the case of PR. The average inter-partition communication is reduced
from 96.1% to 84.0% in the case of SSSP and from 96.0% to 84% in case of PR.

87

Srimanth Gadde, Robert C. Green II, William Acosta, Vijay Devabhaktuni
/ JIITA 2(2)

TABLE II. AVERAGE AND STANDARD DEVIATION OF IMPROVED INTRA-PARTITION AND MINIMIZED INTER-
PARTITION COMMUNICATION

SSSP PR

Graph Topology
Intra-partition
communication

Inter-partition
communication

Intra-partition
communication

Inter-partition
communication

Powerlaw 48.9 ± 0.04 51.1 ± 0.05 49.9 ± 0.04 50.1 ± 0.04

Random near K-regular
(low degree)

33.1 ± 0.04 66.9 ± 0.04 34.2 ± 0.03 65.8 ± 0.03

Random near-K-regular
(high degree)

16.0 ± 0.01 84.0 ± 0.02 15.7 ± 0.01 84.3 ± 0.01

The proposed PSO graph partitioning algorithm gives good results when compared
to the stream partitioning methods in [18]. Their PR computations were improved up
to 18%-39% whereas we improved up to 50%. A set of vertices are randomly selected
(say 10% of total vertices) and the whole graph is partitioned by applying BFS on each
selected vertex within the PSO. This process is repeated for several iterations using
PSO until the algorithm stopping criterion is met. The presented algorithm can mini-
mize the inter-partition communication as well as improve the intra-partition commu-
nication for all the three graph topologies presented by maintaining a good balance
partition. From these results it can be concluded that our proposed algorithm is efficient
and minimizes the inter-partition communication by maximizing the intra-partition
communication.

4. Conclusion

The proposed PSO graph partitioning algorithm gives good results when compared
to the stream partitioning methods in [18]. Their PR computations were improved up
to 18%-39% whereas we improved up to 50%. A set of vertices are randomly selected
(say 10% of total vertices) and the whole graph is partitioned by applying BFS on each
selected vertex within the PSO. This process is repeated for several iterations using
PSO until the algorithm stopping criterion is met. The presented algorithm can mini-
mize the inter-partition communication as well as improve the intra-partition commu-
nication for all the three graph topologies presented by maintaining a good balance
partition. From these results it can be concluded that our proposed algorithm is efficient
and minimizes the inter-partition communication by maximizing the intra-partition
communication.

In this paper, we focused on PSO with BFS using single objective function i.e. max-
imizing the intra-partition communication. In the future, we will focus on PSO with a
multi-objective function where the objective functions include maximizing the intra-
partition communication and efficiently perform balance partitioning on each compu-
ting node to further maximize the intra-partition communication.

88

Srimanth Gadde, Robert C. Green II, William Acosta, Vijay Devabhaktuni
/ JIITA 2(2)

References

[1] U. Kang, E. Charalampos, E. Tsourakakis, C. Faloutsos, “Pegasus: A peta-scale graph mining system
implementation and observations”, in IEEE Ninth International Conference on Data Mining, Miami,
Florida, pp. 229–238, 2009.

[2] U. Kang, C. Tsourakakis, A. Appel, C. Faloutsos, J. Leskovec, HADI: Fast diameter estimation and
mining in massive graphs with Hadoop, Technical Report, Machine Learning Department, School of
Computer Science, Carnegie Mellon University, 2008.

[3] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel: a system for
large-scale graph processing, in International Conference on Management of data, ACM, Indianapolis,
Indiana, pp. 135–146, 2010.

[4] S. Bin, H. Wang, Y. Li, "The Trinity graph engine," Technical Report 161291, Microsoft Research,
2012.

[5] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, "Haloop: Efficient iterative data processing on large
clusters," PVLDB, pp. 285–296, 2010.

[6] Y. Zhang, Q. Gao, L. Gao, C. Wang, “Priter: a distributed framework for prioritized iterative compu-
tations,” in Proceedings of the 2nd ACM Symposium on Cloud Computing, ACM, New York, New
York, pp. 13:1–13:14, 2011.

[7] R. Power, J. Li, “Piccolo: building fast, distributed programs with partitioned tables”, in Proceedings
of the 9th USENIX conference on Operating systems design and implementation, USENIX Associa-
tion, Berkeley, CA, USA, pp. 1–14, 2010.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, “Spark: cluster computing with
working sets”, in Proceedings of the 2nd USENIX conference on Hot topics in cloud computing,
USENIX Association, Berkeley, California, 2010, pp. 10–10.

[9] Apache Incubator Giraph. http://incubator.apache.org/giraph/, 2013.
[10] S. Yang, X. Yan, B. Zong, A. Khan, “Towards effective partition management for large graphs”, in

Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD’12,
ACM, New York, New York, pp. 517–528, 2012.

[11] L. Page, S. Brin, R. Motwani, T. Winograd, “The PageRank Citation Ranking: Bringing Order to the
Web”., Technical Report 1999–66, Stanford InfoLab, 1999.

[12] N. Deo, C.-Y. Pang, “Shortest-path algorithms: Taxonomy and annotation”, Networks 14 pp. 275–323,
2011.

[13] S. Gadde, W. Acosta, J. Ringenberg, R. C. G. II, V. Devabhaktuni, “Achieving Optimal Inter-Node
Communication in Graph Partitioning Using Random Selection and Breadth-First Search,” Interna-
tional Journal of Parallel Programming, pp. 772-800, 2016.

[14] J. Kim, I. Hwang, Y.-H. Kim, B.-R. Moon, “Genetic approaches for graph partitioning: a survey”, in
Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO ’11,
ACM, New York, New York, pp. 473–480, 2011.

[15] P. Sanders, C. Schulz, “High Quality Graph Partitioning”, in 10th DIMACS implementation Chal-
lenge-Graph Partitioning and Graph Clustering, pp. 1–18.

[16] D. Datta, J. R. Figueira, “Graph partitioning by multi-objective real-valued metaheuristics: A compar-
ative study”, Applied Soft Computing, pp. 3976–3987, 2011.

[17] J. Kennedy and R. Eberhart, "Particle swarm optimization," Neural Networks, 1995. Proceedings.,
IEEE International Conference on, Perth, WA, 1995, pp. 1942-1948 vol.4

[18] Guo, , et al., "g2: A graph processing system for diagnosing distributed sytems," Proceedings of the
2011USENIX annual technical conference, USENIXATC (2011).

89

