
Journal of Industrial Information
Technology and Application Vol. 2 No. 3

ISSN(Online) :2586-0852

Copyright©2018. Journal of Industrial Information Technology and Application (JIITA)

Future Internet and Named Data
Networking Hourglass, Packet and Node

Architecture

Ag Asri Ag Ibrahim 1,*), Kashif Nisar1,*)

1) Faculty of Computing and Informatics University Malaysia Sabah, Jalan UMS,
88400 Kota Kinabalu Sabah, Malaysia

Abstract. Named Data Networking (NDN) is a common network
protocol for all applications and network environment. NDN’s network
layer protocol runs on top of a best-effort packet delivery service, which
includes physical channels such as Ethernet wires, and logical
connections such as UDP or TCP tunnels over the existing Internet.
Using this underlying connectivity, NDN provides a content retrieval
service, which allows applications to fetch uniquely named “Data
packets” each carrying a piece of data. The “data” could be practically
anything: text file chunks, video frames, temperature sensor readings …
they are all data. Likewise, a packet in a lower layer network protocol,
such as an Ethernet frame, is also a piece of data. Therefore, it should be
possible to encapsulate Ethernet traffic into NDN Data packets, and
establish a Virtual Private Network (VPN) through NDN communication.
This post describes the architecture of a proof-of-concept Ethernet-over-
NDN tunneling program, and shows a simple performance benchmark
over the real world Internet.

Keywords; Future Internet, Named Data Networking, Internet of Things,
Sensor Networks

1. Introduction

NDN is an entirely new architecture, but one whose design principles are derived
from the successes of today’s Internet, reflecting our understanding of the strengths and

* Corresponding author: awgasri@ums.edu.my, kashif@ums.edu.my
Received: 2017.11.27; Accepted: 2018.11.28; Published: 2018.9.30

This is an Open Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the
original work is properly cited.

115

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

limitations of the current Internet architecture, and one that can be rolled out through
incremental deployment over the current operational Internet. The hourglass architecture
is what makes the original Internet design elegant and powerful [1-3]. It centers on
auniversal network layer (IP) implementing the minimal functionality necessary for
global interconnectivity. This so-called “thin waist” has been a key enabler of the
Internet’s explosive growth, by allowing lower and upper layer technologies to innovate
without unnecessary constraints. NDN keeps the same hourglass-shaped architecture as
shown in Figure 1.

Fig. 1. Internet and NDN Hourglass Architectures

Similar to today’s IP architecture, the thin waist is the centerpiece of the the NDN
architecture. However, because NDN’s thin waist uses data names instead of IP
addresses for delivery in order to offer a new set of minimal functionality, this seemingly
simple change leads to significant differences between IP and NDN in their operations
of data delivery. In this section, we first give a brief sketch of the basic concepts in NDN
data delivery, then explain each element and its role in the overall architecture.

NDN Packet and Node:

Each NDN packet is encoded in a Type-Length-Value (TLV) format. NDN Interest
and Data packets are distinguished by the type number in the first and outmost TLV0.
An NDN packet is mainly a collection of TLVs inside TLV0. Some TLVs may contain
sub-TLVs, and each sub-TLV may also be further nested[4]. A guiding design principle
is to keep the order of TLVis deterministic, and keep the level of nesting as small as
possible to minimize both processing overhead and chances for errors.

LpPacket ::= LP-PACKET-TYPE TLV-LENGTH

 LpHeaderField*

 Fragment?

LpHeaderField ::= .. | Sequence

116

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

Sequence ::= SEQUENCE-TYPE TLV-LENGTH

 fixed-width unsigned integer

Fragment ::= FRAGMENT-TYPE TLV-LENGTH

 byte+

In addition, a host MUST also accept bare network packets (Interest and Data) on a
NDNLPv2 link, which SHOULD be interpreted as an LpPacket with the bare network
packet as its Fragment. However, such packets could be dropped later in processing if
the link configured to require a certain NDNLPv2 feature but a field is missing.

LpHeaderField is a repeatable optional structure in LpHeader. NDNLPv2 features
MAY add new header fields by extending the definition of LpHeaderField. Unless
otherwise specified, the same field shall appear at most once. Unless otherwise specified,
fields MUST appear in the order of increasing TLV-TYPE codes. If an incoming
LpPacket contains an unknown LpHeaderField, the following rules apply: if the
unknown field is in range [800:959], and the two least significant bits are 00, the receive
SHOULD ignore the field, and continue processing the packet; otherwise, the receiver
MUST drop the packet, but SHOULD NOT consider the link has an error. Note: if a
field is recognized but the relevant feature is disabled, it's not an "unknown field".

Sequence contains a sequence number that is useful in multiple features. This field
is REQUIRED if any enabled feature is using sequence numbers, otherwise it's
OPTIONAL. Bit width of the sequence is determined on a per-link basis; 8-octet is
recommended for today's links. A host MUST generate consecutive sequence numbers
for outgoing packets on the same face [5].

Fragment contains a fragment of one or more network layer packets. The
fragmentation and reassembly feature defines how Fragment field is constructed and
interpreted. When fragmentation and reassembly feature is disabled, the Fragment field
contains a whole network layer packet. Fragment is OPTIONAL; an LpPacket without
Fragment is an IDLE packet.

Fig. 2. Internet and NDN Packet

117

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

Fig. 3. Internet and NDN Node

Communication in NDN is driven by the receiving end, i.e., the data consumer. To
receive data, a consumer sends out an Interest packet, which carries a name that identifies
the desired data (see Figure 2). A router remembers the interface from which the request
comes in, and then forwards the Interest packet by looking up the name in its Forwarding
Information Base (FIB), which is populated by a name-based routing protocol. Once the
Interest reaches a node that has the requested data, a Data packet is sent back, which
carries both the name and the content of the data, together with a signature by the
producer’s key (Figure 2). This Datapacket follows in reverse the path taken by the
Interest to get back to the consumer. Note that neither Interest nor Data packets carry
any host or interface addresses (such as IP addresses); Interest packets are routedtowards
data producers based on the names carried in the Interest packets, and Data packets are
returned based on the state information set up by the Interests at each router hop (Figure
2. 3).

The router stores in a Pending Interest Table (PIT) all the Interests waiting for
returning Data packets. When multiple Interests for the same data are received from
downstream, only the first one is sent upstream towards the data source. Each PIT entry
contains the name of the Interest and a set of interfaces from which the Interests for the
same name have been received. When a Data packet arrives, the router finds the
matching PIT entry and forwards the data to all the interfaces listed in the PIT entry [6].
The router then removes the corresponding PIT entry, and caches the Data in the Content
Store. Because an NDN Data packet is meaningful independent of where it comes from
or where it may be forwarded to, the router can cache it to satisfy future requests.
Because one Data satisfies one Interest across each hop, an NDN network achieves hop-
by-hop flow balance.

118

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

2. Proposed Scheme

To realize packet aggregation functions, we define the aggregated content name as

“<name prefix>/<tag>/<aggregation info>”

“#DC” and “#NW” are used as the <tag>. DC and NW stand for data collection and
network, respectively. The “#DC” tag indicates that <aggregation info> includes the
suffixes of the requested content. In addition, we define an extended table as an
aggregation information table (AIT), which stores these three kinds of information.
Routers wait for other Data packets and aggregate them by referencing their own AITs.
For example, when a client requests content:

“ums/parklab/sensor1”

“ums/parklab/sensor2”

“ums/parklab/sensor3”

The aggregated name is

“ums/parklab/#DC/sensor1, sensor2, sensor3”

In the basic NDN, names in FIB are aggregated and recorded as prefixes. NDN
routers forward Interest packets by longest-prefix matching. Therefore, the intermediate
routers can forward the aggregated Interest packet using the basic NDN forwarding logic.

At a branching point, the FIB stores the information of each prefix and name.
Therefore, the router can know that it must segregate the aggregated Interest packets and
forward them to each content producer. When a router segregates an aggregated Interest
packet, the information of <name prefix>, <tag>, and <aggregation info> is recorded in
its AIT, which enables the router to aggregate the corresponding data packets. For
example as shown in Fig.2, the FIB in router A stores “ums/parklab” and the face number.
It can forward an aggregated interest packet named “ums/parklab/#DC/sensor1, sensor2,
sensor3” with the basic NDN function.

Fig. 4. Data collection with aggregated Interest packet

119

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

The FIB in router B stores two prefixes, which are “ums/parklab/sensor1” and
“ums/parklab”. Router B can segregate the incoming aggregated Interest packet and
create two Interest packets by referencing the FIB entries. Interest packets segregated
by router B are named “ums/parklab/sensor1” and “ums/parklab/#DC/sensor2, sensor3.”
At the same time, router B records the <name prefix>, <tag>, and <aggregation info>
in its AIT. Router C also segregates the aggregated Interest packet and creates Interest
packets named “ums/parklab/sensor2” and “ums/parklab/sensor3.” Routers B and C
can wait and aggregate the corresponding Data packets by referencing their AITs. The
name of the aggregated Data packet is the same as that of the incoming Interest packet.
Therefore, the aggregated Data packet can also be forwarded with the basic NDN
function. Routers set a timer before buffering a Data packet and the timer is managed
by an efficient quality-of-service-aware waiting-time management system. When the
timer expires or the router receives all requested Data packets, the router aggregates the
Data packets and forwards the aggregated Data packet out. The timer is needed to avoid
waiting for other Data packets for a long time when a packet loss or any other error
occurs.

The “#NW” tag indicates that <aggregation info> includes the hashed value of the
client’s domain. Routers associated with some hashed values record the information of
Interest packets in their AITs. If a client’s application enables the corresponding Data
packets to be aggregated, the application adds the tag and the hashed value to the name
[9-10].

Fig. 5. Processing logic of extended NDN router

This method does not violate the basic functions and concepts of NDN. It can be
applied by adding some functions to the basic forwarding systems. Fig. 3 illustrates the
processing pipeline which supports the proposed scheme. Our functions can serve as
middle-ware of NDN protocol. If a tag is included in the name, the proposed functions
are invoked; otherwise, the packet is forwarded by the basic NDN logic.

120

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

Traditional transport services provide point-to-point data delivery and most of
today’s distributed applications, including peer-to-peer applications, heavily rely on
centralized servers. To aid the development of robust and efficient distributed
applications, we envision a fundamentally new building block for distributed systems
that we are calling Sync. Built on top of NDN’s basic Interest-Data communication
model, Sync utilizes naming conventions to enable multiple parties to synchronize their
datasets by exchanging data digests, so that individual parties can discover and retrieve
new and missing data in a most efficient and robust manner. We expect that Sync’s role
in the NDN architecture will evolve to one similar to TCP’s in the IP architecture.

3. Results

The network performance was evaluated for ICN and CDN caching to analyze cache
hits, throughput and delay. Figure 4 is shows the throughput results between ICN and
CDN simulated network. Results are showing the prominent difference in improvement
for throughput. The graph to calculate overall network traffic network during simulation
Fig. 4 is drawn for the overall network traffic using the equation 1.

f൫x୨൯ ൌ෍x୧

୬

୧ୀଵ

/n (1)

Where j is the time in seconds during simulation, i the events in one second

throughout the network, x is the throughput in an event and n is the total number of
events in one second

Fig. 6. Overall Network Traffic

The result in Fig. 6 is showing the cache hits while requests were sent. In a
hierarchical way router nodes are able to get more data from their neighboring peers.

 9

 10

 11

 12

 13

 14

 15

 16

 0 10 20 30 40 50 60

T
ra

ff
ic

 (
K

B
/s

)

Simulation time (seconds)

Content Delivery Network
Information Centric Network

121

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

The data which is requested earlier by the other router nodes is cached for future requests.
The graph is showing that requests for the contents which were obtain through first or
second hops in network topology. The success rate of edge network cache hits compared
to in-network cache was only 3% of cache hits in in-network during 60 seconds of
simulation. The overall network traffic dramatically reduced by 71% of edge network
cache in Fig. 4 due to in-network caching.

f൫C୨൯

ൌ෍C୧

୬

୧ୀଵ

(2)

Where j is the time in seconds during simulation, i the events in one second
throughout the network, C is the cache hits in an event and n is the total number of events
in one second.

Fig. 7. The ICN and CDN Cache Hits

The graph in Fig. 7 is accentuating the overall traffic in the network was reduced
when requests for contents were met by the cache in Fig. 5. This result in low traffic load
at WAN communication links. The reduction of congestion in communication links
leads to improve quality of network services. The removal of bottleneck in the network
would provide more opportunities for other applications and services to use the same
links capacity. Removal of congestion and bottleneck is result of diminishing delays.
The delays sensitive applications such as real-time applications can improve
tremendously.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60

P
a

ck
e

ts

Simulation time (seconds)

Content Delivery Network
Information Centric Network

122

Ag Asri Ag Ibrahim, Kashif Nisar / JIITA

4. Conclusions

Mobility is one of the most significant issues in NDN. Moreover, mobility functions
are moved from the mobile devices to the network, and the BIT is easily maintained to
keep the table size limited. The implications of ICN platform are highly beneficial for
different industrial sectors. The information centric network does not only offer cache
mechanism to boost the access but also provide content encryption instead of securing
the communication link. The security of content itself will also reduce the conventional
security devices cost.

References

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of
Information-Centric Networking,” IEEE Communications Magazine, Volume 50, Issue
7, pp. 26-36, July 2012.

[2] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, et al., “A survey of
Information-Centric Networking research,” IEEE Communications Surveys & Tutorials,
Volume 16, Issue 2, pp. 1024-1049, July 2013.

[3] L. Zhang, V. Jacobson, B. Zhang, G. Tsudik, K. Claffy, et al., “Named data networking
(NDN) project,” NDN Technical Report NDN-0001, October 2010.

[4] L. Zhang, K. Claffy, P. Crowley, C. Papadopoulos, L. Wang, et al., “Named data
networking,” NDN Technical Report NDN-0019, April 2014.

[5] D. Byun, B.J. Lee, and M.-W. Jang, “Adaptive flow control via interest aggregation in CCN,”
IEEE International Conference on Communications (ICC), pp. 3738-3742, June 2013.

[6] S. Harada, Z. Yan, Y.J. Park, and W. Kameyama, “Packet aggregation and segregation
mechanism over named data networking,” IEICE Technical Report, Volume 114, Number
252, NS2014-121, pp. 99-103, October, 2014.

[7] Sho Harada, Zhiwei Yan, Yong-Jin Park, and Wataru Kameyama, “Performance analysis of
packet aggregation over NDN”, IEICE General Conference, BS-3-29, March, 2015.

123

