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Abstract. Named Data Networking (NDN) is a common network 
protocol for all applications and network environment. NDN’s network 
layer protocol runs on top of a best-effort packet delivery service, which 
includes physical channels such as Ethernet wires, and logical 
connections such as UDP or TCP tunnels over the existing Internet. 
Using this underlying connectivity, NDN provides a content retrieval 
service, which allows applications to fetch uniquely named “Data 
packets” each carrying a piece of data. The “data” could be practically 
anything: text file chunks, video frames, temperature sensor readings … 
they are all data. Likewise, a packet in a lower layer network protocol, 
such as an Ethernet frame, is also a piece of data. Therefore, it should be 
possible to encapsulate Ethernet traffic into NDN Data packets, and 
establish a Virtual Private Network (VPN) through NDN communication. 
This post describes the architecture of a proof-of-concept Ethernet-over-
NDN tunneling program, and shows a simple performance benchmark 
over the real world Internet. 
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1. Introduction

NDN is an entirely new architecture, but one whose design principles are derived 
from the successes of today’s Internet, reflecting our understanding of the strengths and 
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limitations of the current Internet architecture, and one that can be rolled out through 
incremental deployment over the current operational Internet. The hourglass architecture 
is what makes the original Internet design elegant and powerful  [1-3]. It centers on 
auniversal network layer (IP) implementing the minimal functionality necessary for 
global interconnectivity. This so-called “thin waist” has been a key enabler of the 
Internet’s explosive growth, by allowing lower and upper layer technologies to innovate 
without unnecessary constraints. NDN keeps the same hourglass-shaped architecture as 
shown in Figure 1. 

Fig. 1. Internet and NDN Hourglass Architectures 

Similar to today’s IP architecture, the thin waist is the centerpiece of the the NDN 
architecture. However, because NDN’s thin waist uses data names instead of IP 
addresses for delivery in order to offer a new set of minimal functionality, this seemingly 
simple change leads to significant differences between IP and NDN in their operations 
of data delivery. In this section, we first give a brief sketch of the basic concepts in NDN 
data delivery, then explain each element and its role in the overall architecture. 

NDN Packet and Node: 

Each NDN packet is encoded in a Type-Length-Value (TLV) format. NDN Interest 
and Data packets are distinguished by the type number in the first and outmost TLV0. 
An NDN packet is mainly a collection of TLVs inside TLV0. Some TLVs may contain 
sub-TLVs, and each sub-TLV may also be further nested[4]. A guiding design principle 
is to keep the order of TLVis deterministic, and keep the level of nesting as small as 
possible to minimize both processing overhead and chances for errors. 

LpPacket ::= LP-PACKET-TYPE TLV-LENGTH 

  LpHeaderField* 

  Fragment? 

LpHeaderField ::= .. | Sequence 
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Sequence ::= SEQUENCE-TYPE TLV-LENGTH 

  fixed-width unsigned integer 

Fragment ::= FRAGMENT-TYPE TLV-LENGTH 

  byte+ 

In addition, a host MUST also accept bare network packets (Interest and Data) on a 
NDNLPv2 link, which SHOULD be interpreted as an LpPacket with the bare network 
packet as its Fragment. However, such packets could be dropped later in processing if 
the link configured to require a certain NDNLPv2 feature but a field is missing. 

LpHeaderField is a repeatable optional structure in LpHeader. NDNLPv2 features 
MAY add new header fields by extending the definition of LpHeaderField. Unless 
otherwise specified, the same field shall appear at most once. Unless otherwise specified, 
fields MUST appear in the order of increasing TLV-TYPE codes. If an incoming 
LpPacket contains an unknown LpHeaderField, the following rules apply: if the 
unknown field is in range [800:959], and the two least significant bits are 00, the receive 
SHOULD ignore the field, and continue processing the packet; otherwise, the receiver 
MUST drop the packet, but SHOULD NOT consider the link has an error. Note: if a 
field is recognized but the relevant feature is disabled, it's not an "unknown field". 

Sequence contains a sequence number that is useful in multiple features. This field 
is REQUIRED if any enabled feature is using sequence numbers, otherwise it's 
OPTIONAL. Bit width of the sequence is determined on a per-link basis; 8-octet is 
recommended for today's links. A host MUST generate consecutive sequence numbers 
for outgoing packets on the same face [5]. 

Fragment contains a fragment of one or more network layer packets. The 
fragmentation and reassembly feature defines how Fragment field is constructed and 
interpreted. When fragmentation and reassembly feature is disabled, the Fragment field 
contains a whole network layer packet. Fragment is OPTIONAL; an LpPacket without 
Fragment is an IDLE packet. 

Fig. 2. Internet and NDN Packet 
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Fig. 3. Internet and NDN Node 

Communication in NDN is driven by the receiving end, i.e., the data consumer. To 
receive data, a consumer sends out an Interest packet, which carries a name that identifies 
the desired data (see Figure 2). A router remembers the interface from which the request 
comes in, and then forwards the Interest packet by looking up the name in its Forwarding 
Information Base (FIB), which is populated by a name-based routing protocol. Once the 
Interest reaches a node that has the requested data, a Data packet is sent back, which 
carries both the name and the content of the data, together with a signature by the 
producer’s key (Figure 2). This Datapacket follows in reverse the path taken by the 
Interest to get back to the consumer. Note that neither Interest nor Data packets carry 
any host or interface addresses (such as IP addresses); Interest packets are routedtowards 
data producers based on the names carried in the Interest packets, and Data packets are 
returned based on the state information set up by the Interests at each router hop (Figure 
2. 3).

The router stores in a Pending Interest Table (PIT) all the Interests waiting for 
returning Data packets. When multiple Interests for the same data are received from 
downstream, only the first one is sent upstream towards the data source. Each PIT entry 
contains the name of the Interest and a set of interfaces from which the Interests for the 
same name have been received. When a Data packet arrives, the router finds the 
matching PIT entry and forwards the data to all the interfaces listed in the PIT entry [6]. 
The router then removes the corresponding PIT entry, and caches the Data in the Content 
Store. Because an NDN Data packet is meaningful independent of where it comes from 
or where it may be forwarded to, the router can cache it to satisfy future requests. 
Because one Data satisfies one Interest across each hop, an NDN network achieves hop-
by-hop flow balance. 
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2. Proposed Scheme

To realize packet aggregation functions, we define the aggregated content name as 

“<name prefix>/<tag>/<aggregation info>”  

“#DC” and “#NW” are used as the <tag>. DC and NW stand for data collection and 
network, respectively. The “#DC” tag indicates that <aggregation info> includes the 
suffixes of the requested content. In addition, we define an extended table as an 
aggregation information table (AIT), which stores these three kinds of information. 
Routers wait for other Data packets and aggregate them by referencing their own AITs. 
For example, when a client requests content:  

“ums/parklab/sensor1”  

“ums/parklab/sensor2” 

“ums/parklab/sensor3”  

The aggregated name is 

“ums/parklab/#DC/sensor1, sensor2, sensor3” 

In the basic NDN, names in FIB are aggregated and recorded as prefixes. NDN 
routers forward Interest packets by longest-prefix matching. Therefore, the intermediate 
routers can forward the aggregated Interest packet using the basic NDN forwarding logic. 

At a branching point, the FIB stores the information of each prefix and name. 
Therefore, the router can know that it must segregate the aggregated Interest packets and 
forward them to each content producer. When a router segregates an aggregated Interest 
packet, the information of <name prefix>, <tag>, and <aggregation info> is recorded in 
its AIT, which enables the router to aggregate the corresponding data packets. For 
example as shown in Fig.2, the FIB in router A stores “ums/parklab” and the face number. 
It can forward an aggregated interest packet named “ums/parklab/#DC/sensor1, sensor2, 
sensor3” with the basic NDN function. 

Fig. 4.  Data collection with aggregated Interest packet 
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The FIB in router B stores two prefixes, which are “ums/parklab/sensor1” and 
“ums/parklab”. Router B can segregate the incoming aggregated Interest packet and 
create two Interest packets by referencing the FIB entries. Interest packets segregated 
by router B are named “ums/parklab/sensor1” and “ums/parklab/#DC/sensor2, sensor3.” 
At the same time, router B records the <name prefix>, <tag>, and <aggregation info> 
in its AIT. Router C also segregates the aggregated Interest packet and creates Interest 
packets named “ums/parklab/sensor2” and “ums/parklab/sensor3.” Routers B and C 
can wait and aggregate the corresponding Data packets by referencing their AITs. The 
name of the aggregated Data packet is the same as that of the incoming Interest packet. 
Therefore, the aggregated Data packet can also be forwarded with the basic NDN 
function. Routers set a timer before buffering a Data packet and the timer is managed 
by an efficient quality-of-service-aware waiting-time management system. When the 
timer expires or the router receives all requested Data packets, the router aggregates the 
Data packets and forwards the aggregated Data packet out. The timer is needed to avoid 
waiting for other Data packets for a long time when a packet loss or any other error 
occurs. 

The “#NW” tag indicates that <aggregation info> includes the hashed value of the 
client’s domain. Routers associated with some hashed values record the information of 
Interest packets in their AITs. If a client’s application enables the corresponding Data 
packets to be aggregated, the application adds the tag and the hashed value to the name 
[9-10]. 

Fig. 5.  Processing logic of extended NDN router 

This method does not violate the basic functions and concepts of NDN. It can be 
applied by adding some functions to the basic forwarding systems. Fig. 3 illustrates the 
processing pipeline which supports the proposed scheme. Our functions can serve as 
middle-ware of NDN protocol. If a tag is included in the name, the proposed functions 
are invoked; otherwise, the packet is forwarded by the basic NDN logic. 
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Traditional transport services provide point-to-point data delivery and most of 
today’s distributed applications, including peer-to-peer applications, heavily rely on 
centralized servers. To aid the development of robust and efficient distributed 
applications, we envision a fundamentally new building block for distributed systems 
that we are calling Sync. Built on top of NDN’s basic Interest-Data communication 
model, Sync utilizes naming conventions to enable multiple parties to synchronize their 
datasets by exchanging data digests, so that individual parties can discover and retrieve 
new and missing data in a most efficient and robust manner. We expect that Sync’s role 
in the NDN architecture will evolve to one similar to TCP’s in the IP architecture. 

3.   Results 

The network performance was evaluated for ICN and CDN caching to analyze cache 
hits, throughput and delay. Figure 4 is shows the throughput results between ICN and 
CDN simulated network. Results are showing the prominent difference in improvement 
for throughput. The graph to calculate overall network traffic network during simulation 
Fig. 4 is drawn for the overall network traffic using the equation 1. 

 
f൫x୨൯ ൌ෍x୧

୬

୧ୀଵ

/n ( 1) 

 
Where j is the time in seconds during simulation, i the events in one second 

throughout the network, x is the throughput in an event and n is the total number of 
events in one second 

 

Fig.  6. Overall Network Traffic 

The result in Fig. 6 is showing the cache hits while requests were sent. In a 
hierarchical way router nodes are able to get more data from their neighboring peers. 
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The data which is requested earlier by the other router nodes is cached for future requests. 
The graph is showing that requests for the contents which were obtain through first or 
second hops in network topology. The success rate of edge network cache hits compared 
to in-network cache was only 3% of cache hits in in-network during 60 seconds of 
simulation. The overall network traffic dramatically reduced by 71% of edge network 
cache in Fig. 4 due to in-network caching. 

f൫C୨൯

ൌ෍C୧

୬

୧ୀଵ

( 2) 

Where j is the time in seconds during simulation, i the events in one second 
throughout the network, C is the cache hits in an event and n is the total number of events 
in one second. 

Fig.  7. The ICN and CDN Cache Hits 

The graph in Fig. 7 is accentuating the overall traffic in the network was reduced 
when requests for contents were met by the cache in Fig. 5. This result in low traffic load 
at WAN communication links. The reduction of congestion in communication links 
leads to improve quality of network services.  The removal of bottleneck in the network 
would provide more opportunities for other applications and services to use the same 
links capacity. Removal of congestion and bottleneck is result of diminishing delays. 
The delays sensitive applications such as real-time applications can improve 
tremendously. 
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4. Conclusions

Mobility is one of the most significant issues in NDN. Moreover, mobility functions 
are moved from the mobile devices to the network, and the BIT is easily maintained to 
keep the table size limited. The implications of ICN platform are highly beneficial for 
different industrial sectors. The information centric network does not only offer cache 
mechanism to boost the access but also provide content encryption instead of securing 
the communication link. The security of content itself will also reduce the conventional 
security devices cost. 
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