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Abstract. Energy consumption prediction is becoming popular research topic as 

many countries want to know the requirements of power consumption so that they 
can generate sufficient power to provide uninterrupted electricity. The aim of our 
work is to develop an effective predictive model for a building located in Clamart, 
France and then do performance analysis with the existing deep learning models. 
For this purpose, we develop a long-short-term memory (LSTM) neural network 
model which uses acute parameters as well as monitored data with different time 
resolutions to determine the levels of accuracy for prediction. The model used a 
dataset to train and test for getting the best accuracy. The results showed that the 

developed LSTM model is more applicable to predict energy consumption using 1-
min resolution dataset rather than other time resolutions. The analysis of the results 
using the dataset of 1-minute resolution showed that the proposed model 
outperformed other existing predictive deep learning models.  

Keywords: Energy consumption, Energy prediction, Time series, Time series 
predicting strategies, Deep learning, Recurrent neural network, Long short-term 
memory 

1. Introduction 

In recent decades, the energy consumption has been accelerated 

exponentially due to the high demand for electricity because of rapid 

population and economic growth [1]. This happens because of an accelerated 

development of production capacity contributed by Japan, China, and India. 

The significant change is observed in electricity generation in 2017 from Asia. 

Consequently, there is significant growth in Asia, and this growth is to a small 

extent in EU and Canada. However, the demand of generating electricity in 
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USA is declining, in the EU and Canada to a smaller extent. In the past, there 

have been numerous studies in electricity demand forecasting, electricity load 

forecasting, electricity storage, short-term load prediction and occupant 

behaviour [2-6].  

As it is predominant to develop effective ways to predict the load or 

consumption models accurately, the efficacy of techniques is imperative. Some 

techniques for energy consumption prediction include linear regression (LR) 

models [7], ARIMA [8], artificial neural networks [9], SVM and SVR [10], and 

time series [11]. These models can be divided into four major groups: statistical 

models, machine learning (ML) models, deep learning and hybrid models.  

On the other hand, recurrent neural network (RNN) stores the time series 

data in a hidden memory in order to process, represent, store, and update the 

data over time [12]. Recently, much study has been focused on obtaining 

temporal and spatial features through models developed by the combinations 

of CNN and LSTM. Wang et al. also used CNN-LSTM model to analyse the 

emotions with text input in the field of natural language processing [13].  

In general, it is not easy to forecast electric energy consumption using 

traditional prediction approaches as the data for electric power consumption 

show not only regular seasonal pattern but also irregular trend components [14]. 

In Section 2, we describe the features as well as statistical information of 

datasets. Section 3 includes the detailed analysis of our results with discussions. 

Finally, we conclude with the summary of the proposed work with the 

comparisons among the existing works.  

2. Data and Methods 

The University of California at Irvine machine learning repository has the 

electricity consumption dataset which consists of a total of 2,075,259 time-

series instances and 12 variables (https://archive.ics.uci.edu/ml/datasets/). The 

dataset has four- year power consumption data (from December 16, 2006 to 

November 26, 2010) of homes in France [15]. Table I provides information 

about attributes with description of dataset and Table II represents the statistical 

information of the dataset. Figure 1 shows the graph of how the global active 
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power consumption differs from one year to another year. Figure 2 shows a 

basic diagram Long Short Term Memory (LSTM) network.  

 

 
Figure 1. The global active power consumption for the years (2006-2010).  

 

 

 
 

We applied long-short-term memory (LSTM) neural network model in our 

model which uses acute parameters as well as monitored data with different 

time resolutions to determine the levels of accuracy for prediction. The model 

used a dataset to train and test for getting the best accuracy. The results showed 

that the developed LSTM model is more applicable to predict energy 

consumption using different time resolutions:1-min, 15-min, 30-min, 45-min, 

and 60-min.  
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Figure 2. Diagram of basic Long Short Term Memory (LSTM) network 

3. Results and Discussion 

In this section, we provide quantitative analysis of the proposed technique. The most 

important thing is that the results from RNNs will be established its robustness for 

predicting consumption patterns by comparing our approach with machine learning and 

deep learning methods.  

3.1. Evaluation Metrics  

In order to evaluate the proposed approach with other approaches, we will use four 

useful metrics: Mean Square Error (MSE) Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE).  

𝑀𝑆𝐸 =
1

𝑛
∑(Yi − Yi̅)

2

𝑛

1

                     (1) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(Yi − Yi̅)2

𝑛

1

             (2) 

 

𝑀𝐴𝐸 =
1

𝑛
∑|Yi − Yi̅|                    (3)

𝑛

1

 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

Yi − Yi̅

Yi
|                 (4)

𝑛

1

 



                                                  Sang C. Suh, Md. Abdur Rahman  635 

Journal of Industrial Information Technology and Application 

3.2. Comparisons 

We have focused on the time resolutions of the different step lengths: 1 

minute, 15 minutes, 30 minutes, 45 minutes and 60 minutes, and observations 

of dataset are selected according to each time resolution. We have made 5 

different types of observations of dataset to train and test the model. Figure 3 

compares the actual and predicted global active power consumption for epoch 

of different time resolutions: (a) 1 min, (b) 15 min, (c) 30 min, (d) 45 min, (e) 

60 min, respectively. Figure 4 shows the error values of these error metrics for 

the dataset of time resolution in a bar diagram.  

 

 
Figure 3. Comparison of actual and predicted global active power consumption for each 

epoch for different time resolutions: (a) 1 min, (b) 15 min (c) 30 min (d) 45 min (e) 60 min. 
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Figure 4. Values of error metrics (MSE, RMSE, and MAE) for (a) different time resolutions. 

 

TABLE III 

 Comparison between existing models and proposed model  

Recent Works MSE RMSE MAE 

Rajabi et al., 2019 [16] 0.62 0.79 0.59 

Ullah et al., 2020   [17]  0.31 0.56 0.34 

Proposed (1 min Res.)        0.048 0.22 0.08 

 

 

For the evaluation of efficacy, Rajabi et al., 2019 claims that the errors ware 

lowest for MSE, RMSE, and MAE respectively [16]. The performances of the 

research work of Ullah et al., 2020 [17] is better than the results of Rajabi as 

can be seen in Table III. On the other hand, our proposed model achieves 0.048, 

0.22, 0.08 for MSE, RMSE, and MAE respectively while using whole dataset 

(2006-10) with 1 min time resolution in the same table.  Thus, the proposed 

model performs the best among the three methods while using whole daily 

household dataset. 

4. Conclusion  

In this work, we developed a deep learning framework in order to predict 

the electricity consumption in a residential building for UCI household 

electricity consumption data to evaluate it. After pre-processing the dataset, we 

apply it to the developed LSTM model for training and testing in order to 

validate the efficacy of the model. We observed that our proposed model 

achieves 0.048, 0.22, 0.08 for MSE, RMSE, and MAE respectively while using 

whole dataset (2006-10) with 1 min time resolution. It shows the best 

performance while comparing the other works to predict the electricity energy 
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consumption. Therefore, the analysis of the results showed that the proposed 

model outperformed other existing predictive deep learning models while using 

1-minute resolution of the dataset.  
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