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Abstract. The swift advancements in medical imaging highlight the need for robust 
automated multi-label annotation systems, particularly in chest imaging, crucial for 
diagnosing and monitoring various thoracic diseases. Despite the adoption of deep 
learning models for image annotation, accurately annotating multiple conditions in 
chest images remains challenging. A noteworthy attempt, the adversarial-based 
denoising autoencoder model, showed promise in multi-label classification but had 
limitations in accuracy and robustness. Motivated by this, we propose the SS-GAN-
ViT model, melding self-supervised learning, adversarial networks, and Vision 
Transformers to significantly enhance multi-label annotation accuracy in chest imaging. 
This novel amalgamation aims to address the identified limitations of existing models, 
offering a robust solution for accurate multi-label annotation. Anticipated comparative 
evaluations with existing models are expected to showcase the superior performance of 
SS-GAN-ViT, advancing the field of medical image annotation and potentially aiding 
better diagnostic and treatment planning in healthcare. 
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1.   Introduction 

In recent years, medical imaging has grown significantly due to major advancements 
in Information Technology (IT) and Artificial Intelligence (AI) [1], [2], [3]. These 
advancements have ushered in smart healthcare solutions, enabling early detection and 
accurate diagnosis of various diseases like lung cancer and pneumonia. 2023; Among 
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these advancements, Medical Image Annotation (MIA) plays a key role by providing a 
detailed analysis of medical images. It helps in identifying organ abnormalities, locating 
them accurately, and categorizing them, which not only enhances the understanding of 
medical images but also provides medical practitioners with valuable insights, thereby 
improving the decision-making process in clinical settings [4], [5].  

The rise in Natural Language Processing (NLP) and deep learning technologies has 
enabled automatic description generation for natural images, highlighting the possibility 
of automated medical image annotation [6], [7], [8], [9]. Early works in this field have 
laid a strong groundwork, with models like MC-MIA demonstrating the effectiveness of 
adversarial-based denoising autoencoders for this task. Yet, chest image annotation is 
challenging due to chest anatomy complexities and the need for accurate annotation for 
diagnosis. These issues emphasize the need for innovative models capable of handling 
complex label correlations in chest images, thereby improving the accuracy and 
usefulness of chest image annotation.  

Motivated by this need, we propose a new multi-label classification framework, SS-
GAN-ViT, which combines Self-Supervised GANs and Vision Transformers for 
improved chest image annotation. This initiative is spurred by the promise of self-
supervised learning in identifying complex label correlations [10], adversarial networks 
in optimizing the delineation of these correlations, and Vision Transformers in handling 
Our proposed model, SS-GAN-ViT, aims to significantly enhance the accuracy of chest 
image annotation by effectively navigating complex label correlations, addressing a 
crucial gap in current medical image annotation models. It is carefully designed to tackle 
the unique challenges of chest images, advancing towards the broader goal of improving 
clinical decision-making through accurate chest image annotation.  

The SS-GAN-ViT model, tested on the NIH Chest X-ray Dataset, shows notable 
improvement in annotation accuracy over existing models . This thorough validation 
highlights SS-GAN-ViT's potential as a strong solution for chest image annotation, 
contributing significantly to medical image analysis. This research not only advances the 
current state-of-the-art in chest image annotation but also sets a solid base for future 
work in this vital area.  

The following sections of this paper are arranged to thoroughly explain our proposed 
research. Section 2 explores the literature survey, highlighting current models and their 
limitations [11] 
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2.   Literature Survey 

A. Traditional and Deep Learning Models in MIA 

In the early stages, Medical Image Annotation (MIA) employed traditional models 
like logistic regression and SVM for multi-label classification tasks. These models 
required manual feature engineering, which was time-consuming and could lead to 
overfitting, limiting their adaptability across different datasets or imaging types [12]. 
They also struggled to capture important hierarchical and spatial relationships in image 
data. The advent of deep learning, particularly CNNs, allowed automatic hierarchical 
feature learning from images, benefiting MIA. Despite their promise, CNNs faced 
challenges in addressing complex label correlations in medical images, often treating 
each label separately. This limitation highlighted the need for advanced models to 
understand complex label relationships, paving the way for exploring innovative 
architectures and learning methods. 

B. Self-Supervised Learning 

Self-Supervised Learning (SSL) has emerged as a method to utilize information in 
unlabeled data, reducing the need for large labelled datasets, which are hard to obtain in 
the medical field. SSL creates pretext tasks to discover underlying features in data, aiding 
downstream tasks like Medical Image Annotation (MIA) .A technique in SSL, 
contrastive learning, helps in distinguishing similar and dissimilar data, enhancing image 
representations [13]. This is crucial in understanding complex label correlations in 
medical images for precise annotation. SSL's ability to exploit unlabeled medical images 
improves the robustness and generalizability of MIA models, especially in chest image 
annotation, paving the way for advanced models, aiding clinical decision support. 

C. Adversarial Networks: 

Generative Adversarial Networks (GANs) have become crucial in medical image 
annotation by expanding datasets and enhancing image representations. Within GANs, 
a generator creates data, while a discriminator differentiates real from generated data, 
which fine-tunes the generator. This process yields better representations for medical 
images. Adversarial training has been shown to boost model performance in medical 
image analysis. GANs are particularly useful for data augmentation, generating 
additional training data when labelled data is scarce. This is promising for chest image 
annotation, enhancing accuracy and aiding clinical decision support. The emergence of 
new GAN variants further holds promise to tackle challenges in medical image 
annotation, continually improving model performance in this domain. 
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D. Vision Transformers   

The emergence of Vision Transformers (ViTs), initiated by Dosovitskiy et al., has 
marked a significant milestone in image processing, demonstrating notable effectiveness 
in image-related tasks, particularly in image classification, and in some scenarios, 
surpassing the performance of traditional Convolutional Neural Networks (CNNs) [14]. 
Unlike CNNs, which mainly focus on local spatial correlations, ViTs employ self-
attention mechanisms, capturing long-range dependencies across an image, thus offering 
a global understanding of the image context. They dissect an image into fixed-size non-
overlapping patches, which are linearly embedded and traversed through a stack of 
Transformer layers. This innovative methodology facilitates the capture of holistic 
image features and the relationships between different regions of an image. In the realm 
of medical imaging, the capability of ViTs can be exceptionally beneficial for tasks 
necessitating a comprehensive understanding of image content. The growing 
applications of ViTs in medical image annotation highlight their potential to enhance the 
accuracy and efficiency of annotating chest images, especially when integrated with self-
supervised learning and adversarial networks. The novel architecture of ViTs, therefore, 
carries the promise of significantly propelling the field of medical image annotation 
forward, aligning well with the objectives of our project to improve chest image 
annotation.   

E. Multi-label classification   

Multi-label classification is used to tackle challenges in medical image annotation. 
For example, the MC-MIA. uses pattern mining and adversarial learning for this task. It 
aims to improve annotation accuracy by understanding label correlations in medical 
images. Transforming annotation into a multi-label classification problem helps manage 
complex label relationships, enhancing annotation detail and accuracy. MC-MIA 
showcases multi-label classification's potential for better medical image annotation. 

3.   Methodology 

Our methodology, as depicted in Figure 1, is designed to harness the strengths of 
Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), and Vision 
Transformers (ViTs) for effective multi-label annotation on the NIH Lung X-ray dataset. 
We believe that an integration of these techniques offers the best approach to extracting 
meaningful and discerning features from the dataset, while simultaneously enhancing 
the reliability and accuracy of our annotations.  
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Figure 1.  Pipeline of SS-GAN-ViT model 

A. Dataset Preprocessing 
The NIH Lung X-ray dataset is a cornerstone of our research. As depicted in Figure 

2, To ensure it aligns with our analytical framework, we introduced a series of 
preprocessing steps. We normalized the data to ensure uniform pixel intensity across 
images, essential for accurate feature extraction and to prevent biases. Resizing images 
was necessary to maintain consistency with our model's input expectations. Additionally, 
we believe that data augmentation, including techniques like random rotations and flips, 
is pivotal in enlarging our effective dataset size, introducing variability, and enhancing 
our model's generalization capability.   

 

Figure 2.  Data Preprocessing steps 
 

B. Self-supervised Learning (SSL) Implementation   

As illustrated in Figure 3, We chose the SSL approach because it excels in contexts 
with limited labeled data. Given the vastness and limited annotation of the NIH Lung X-
ray dataset, SSL's pretext tasks, specifically tailored for chest images, presented a viable 
strategy. Tasks like predicting rotation angles and colorizing grayscale images not only 
enriched our feature set but also simulated a learning environment similar to real-world 
clinical scenarios. The deep convolutional backbone was selected for its proven 
capability in feature extraction. Furthermore, the NT-Xent loss function was used for its 
proficiency in distinguishing between similar and dissimilar images in the embedded 
space.    
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Figure 3.   Self-supervised learning (SSL) implementation. 

C. Generative Adversarial Networks (GANs) Implementation 

As shown in Figure 4, GANs were chosen because of their unparalleled success in 
image synthesis and enhancement. In our setup, the deep convolutional generator was 
critical for creating synthetic yet realistic chest X-rays that could further train our models. 
The discriminator's role in differentiating real and synthetic images was pivotal for 
training the generator. We opted for the Wasserstein loss with gradient penalty because 
of its known advantages in stabilizing GAN training and promoting better convergence. 

 

Figure 4.  Generative Adversarial Networks (GANs) Implementation 

D. Vision Transformers (ViTs) Implementation  

The choice of Vision Transformers (ViTs) is predicated on their recent ascendancy 
in image data analysis, where they have begun to surpass conventional Convolutional 
Neural Networks (CNNs) in various tasks. Unlike traditional methods, ViTs dissect 
images into fixed-size patches, which are then processed to parse the image into coherent 
segments that offer greater interpretability, a process illustrated in Figure 5. Furthermore, 
the multi-head self-attention mechanisms integral to transformers enable the 
discernment of complex patterns within these segments, a feature critical for the detailed 
analysis required in chest X-ray examination, as depicted in Figure 5.   

 

Figure 5.  Vision Transformers (ViTs) Implementation 
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E. Model Integration and Training 

For a holistic and synergistic approach, we integrated features derived from the SSL, 
GAN, and ViT modules. This fusion strategy, as illustrated in Figure 6, aimed at 
combining the strengths of each method for a comprehensive feature set. We believe that 
an integrated multi-label classification head is crucial for predicting a diverse range of 
conditions that an X-ray might represent. Our composite loss function was 
conceptualized to bring together the adversarial aspects of GAN training and the 
specificity of multi-label classification. Training details were carefully chosen based on 
preliminary experiments and literature benchmarks to ensure that the model performance 
was both optimal and robust. 

 

Figure 6.  Model Integration and training 

4.  Implementation   

A. Data Acquisition and Preprocessing:  
The NIH chest x-ray dataset, comprising over 112,120 frontal-view x-ray images of 
30,805 unique patients with 14 disease labels, was procured and verified for integrity.  

1) Preprocessing Techniques  
During preprocessing, each image from the NIH chest X-ray dataset was normalized 

to a zero mean with unit variance, crucial for uniform pixel intensity distribution—a 
prerequisite for effective model training. Subsequently, data augmentation strategies 
were implemented, introducing random rotations (0-15 degrees), translations (up to 10% 
image dimension), and zoom (up to 20%) to bolster the model's generalization 
capabilities. For enhanced lung field visualization, pivotal in accurate diagnosis, 
CLAHE was applied with optimized parameters (clip limit: 2.0, grid size: 8x8) tailored 
for X-ray images. Noise reduction and artifact minimization were achieved through 
Gaussian blurring (5x5 kernel) and adaptive masking, selectively obscuring non-
diagnostic anatomy and devices, thus standardizing the dataset for deep learning 
applications.   

2) Annotation Conversion: 
Textual annotations underwent rigorous processing using natural language 

processing methodologies. This transformation converted descriptions into structured 
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multi-label vectors. Techniques like vectorization, tokenization, and stopword removal 
were judiciously employed, culminating in tensors primed for the ensuing training phase. 

B. Model Architecture and Integration   

A synergistic model architecture was developed, integrating SS-GAN with ViT for 
enhanced classification performance.    

1) SS-GAN Configuration   
• 1.1 Generator: A convolutional neural network with eight layers, each layer 

followed by batch normalization and ReLU activation. A latent dimension of 
100 was used for noise vector input, and a Tanh activation was used at the output 
layer to generate images.    

• 1.2 Discriminator: A convolutional neural network with a sigmoid output for 
real versus synthetic image classification and a softmax output for the 14 disease 
labels. Spectral normalization was applied to stabilize training.   

2) ViT Integration    
• 2.1 Feature Extraction: ViT, pre-trained on ImageNet, was further trained 

using features extracted by the SS-GAN discriminator, adapting the transformer 
to medical imaging specifics.    

• 2.2 Self-Supervised Learning Tasks: Predictive modelling of masked image 
segments was employed using a masking rate of 20%, and contrastive learning 
was facilitated by a Siamese network structure to learn distinct image 
representations. 

C. Training Strategy and Parameters   

The training was divided into two main phases, adversarial training for the GAN and 
self-supervised pretraining for the ViT.    

1) Adversarial Training    
• 1.1 Training Regimen: The GAN was trained for 1000 iterations with a mini-

batch size of 64. The Adam optimizer was used with learning rates of 0.0002 for 
the generator and 0.0001 for the discriminator, and beta values of (0.5, 0.999).    

2) Self-Supervised Pretraining   
• 2.1 Training Parameters: The ViT was pretrained for 50 epochs on the NIH 

dataset with a batch size of 32. A learning rate of 3e-5 was used with a cosine 
decay schedule and a warm-up period of 10 epochs. The cross-entropy loss was 
employed for masked segment prediction, and a triplet margin loss for 
contrastive learning. 
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D. Evaluation Metrics and Procedure   

The performance of the integrated model was evaluated through extensive testing on 
a reserved subset of the NIH dataset, stratified to maintain representation across all 
classes.    

1) F1-Score   
To address class imbalance within the dataset, weighted F1-scores were computed 

for each disease label. The F1-Score is a critical metric that combines precision and recall, 
providing a single score to measure the model's accuracy while considering both false 
positives and false negatives. The beta value was set to 1, indicating that precision and 
recall were given equal importance in this metric's calculation. This is particularly vital 
in medical diagnostics, where the cost of false negatives can be as significant as false 
positives.    

2) AUC ROC (Area Under the Receiver Operating Characteristic Curve) Analysis 
Curve 

Instead of individual ROC (Receiver Operating Characteristic) curves for each 
disease label, we have charted the AUC (Area Under the Curve) for our model across 50 
epochs, providing a temporal perspective on its discriminative performance. This 
approach reflects the model's capacity to consistently distinguish between diseased and 
non-diseased classes over the course of training, with the AUC (Area Under the Curve) 
serving as a comprehensive and threshold-independent metric of model quality. The 
sustained increase in AUC (Area Under the Curve) over time is indicative of the model's 
improving accuracy and its robustness against overfitting, affirming its potential for 
reliable deployment in clinical settings.    

Each of these metrics offers unique insights into the model's performance and 
collectively contributes to a comprehensive evaluation. The calculated scores not only 
highlight the model's strengths but also help identify areas requiring further refinement. 

5. Results 

Our exploration into the NIH chest X-ray dataset for disease classification, 
summarized in Table 1, showcases the SS-GAN + ViT model's superior AUC (Area 
Under the Curve) and F1 Score, outperforming the baseline EfficientNet B4, SS-GAN 
with EfficientNet B4, and ViT alone. This data demonstrates the efficacy of our 
integrated approach in a complex multi-label classification task. Figure 8 provides a 
visual representation of this analysis, displaying the predictive capabilities of our model 
against actual diagnostic labels, further illustrating the enhanced performance and 
accuracy in disease detection.   
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Model AUC F1 Score 
Efficient b4 0.856 0.232 

SSGAN Efficient b4 0.887 0.33 
ViT 0.885 0.374 

SSGAN ViT 0.905 0.513 

Table I.  COMPARATIVE PERFORMANCE METRICS 

 

Figure 7.  Training and Validation AUC (Area Under the Curve) of SS-GAN ViT Model Over Epochs  

Comparative Analysis: When placed alongside findings from previous studies on the 
NIH dataset, our models performed admirably. For instance, the VDSNet framework 
reported a validation accuracy of 73% which, when compared to the significant increase 
in AUC (Area Under the Curve) provided by our SS-GAN integrated models, suggests 
a substantial improvement in disease classification capability [15].  

In another study, deep neural networks targeting tuberculosis achieved an AUC 
(Area Under the Curve) of 0.83, which is comparable to the AUC (Area Under the Curve) 
of our baseline Efficient Net model. However, the enhanced models with SS-GAN 
integration surpassed this, indicating a potential for better discrimination between 
disease classes [16].  

Furthermore, various CNNs including ResNet18 assessed on the NIH dataset 
achieved AUCs (Area Under the Curves) over 0.96, with ResNet18 reaching up to 
0.9824. While these AUCs (Area Under the Curves) are higher than those achieved by 
our models, it is important to note that these figures were obtained from models trained 
for binary classification tasks, as opposed to our multi-label classification challenge, 
which is inherently more complex and prone to lower performance metrics [17]. For a 
detailed comparison of model performances, refer to Table 2. 
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Study/Model Metric Value Comparsion to our work 
EfficientNet B4 AUC 0.856 Baseline 
SSGAN + EfficientNet B4 AUC 0.887 Improved over baseline 
ViT AUC 0.885 Baseline 

ResNet18 (Binary Classification) AUC 0.9824 
Higher than ours, but for binary 
classification 

VDSNet Framework Accuracy 73% Lower than our best ROC 
DNN for Tuberculosis AUC 0.83 Comparable to our baseline EfficientNet 
SSGAN + ViT AUC 0.905 Best Performance in our study 

Table II.  COMPARATIVE PERFORMANCE OF DEEP LEARNING MODELS ON THE NIH CHEST X-RAY 

DATASET 

 

Figure 8.  Chest X-ray Analysis: Predictive Diagnosis vs. Actual Pathological Findings 

• Analysis and Discussion: 

 

Table III.  COMPARES THE SS-GAN + VIT MODEL WITH OTHER MODELS ACROSS KEY CRITERIA, 
HIGHLIGHTING ITS SUPERIOR PERFORMANCE IN AREAS LIKE MULTI-LABEL CLASSIFICATION AND LEARNING 

FROM UNLABELED DATA. 



                                                              Sang Suh, Sobha Rani Ponduru                                                  929 

JIITA 

The SS-GAN + ViT model demonstrates a trajectory of consistent improvement and 
adaptability, as captured by the ascending AUC (Area Under the Curve) values depicted 
in Figure 7. This graph not only marks the highest AUC (Area Under the Curve) 
achievement at 0.905 but also reflects the model's stability and learning efficiency 
throughout the training and validation phases across 50 epochs. Table 3 offers a 
comparative perspective, affirming the model’s distinguished capabilities in multi-label 
classification and its adeptness at leveraging unlabeled data, which is substantiated by a 
notable F1 Score of 0.513. These results underscore the SS-GAN + ViT model's 
advanced feature extraction capabilities, owing to the SS-GAN component, and the 
refined attention mechanisms inherent to the ViT architecture. Such attributes are 
particularly beneficial for the NIH chest X-ray dataset, which presents a wide spectrum 
of pathologies.  

During the implementation, we encountered challenges related to the balancing of 
the generator and discriminator in the SS-GAN, a common issue within GAN 
frameworks. Additionally, fine-tuning the ViT for the specific nuances of the medical 
imaging data required meticulous parameter adjustments.  

Commentary:  The integration of SS-GAN with ViT presents a promising advance 
in medical image analysis, particularly for the multi-label classification task represented 
in the NIH chest x-ray dataset. The improvements over existing models highlight the 
potential of this approach to enhance diagnostic accuracy significantly. These results, 
however, should be interpreted with caution, as real-world clinical validation is 
necessary to ascertain the model's practical utility. Further research is also warranted to 
ensure the robustness of the model across different imaging modalities and patient 
populations. 

6. Future Works and Discussion    

A. General Discussion of Achievements  
This study introduced SS-GAN-ViT, an innovative model that amalgamates self-

supervised learning, adversarial networks, and Vision Transformers to advance multi-
label chest image annotation. The model demonstrated a significant improvement in 
annotation accuracy, addressing limitations of existing deep learning models in medical 
image analysis.  

B. Lessons Learned and Challenges  

The research journey underscored the value of integrating diverse AI techniques in 
medical imaging. Key challenges included achieving model stability and handling 
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complex datasets. Unexpected issues, particularly in the discriminator-generator balance, 
provided insights for future research directions.  

C. Suggestions and Reflections  

Further optimization of the SS-GAN-ViT model could involve exploring more 
intricate self-supervised learning techniques and expanding its applicability to a broader 
range of medical imaging tasks. The adaptability of the model to different datasets and 
conditions remains an area ripe for exploration.  

D. Unachieved Goals and Future Ambitions  

While the model excels in many aspects, certain conditions proved challenging to 
annotate accurately. Future work aims to refine the model's capacity to discern more 
subtle pathological features, potentially incorporating additional modalities like CT or 
MRI for comprehensive analysis.  

E. Improvement and Optimization  

Future iterations of SS-GAN-ViT could benefit from more advanced architectural 
optimizations and training strategies. A critical step forward will be its clinical validation, 
ensuring its efficacy and reliability in real-world medical settings. Tailoring the model 
to align more closely with clinical workflows and patient diversity will be paramount in 
future developments. 
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