
Journal of Industrial Information Technology and Application
Vol.8 No.2

ISSN(Online): 2586-0852

Copyright©2017. Journal of Industrial Information Technology and Application (JIITA) 951

BEACON - Voice Assistant for Impaired
People on Windows PC

Truong Quoc Thang1,*), Pham Quoc Bao1), Nguyen Van Vi1), Than Thi
Thao1) , Nguyen Trieu Tien1) and Tran Kim Sanh1)

1) International School, Duy Tan University, Da Nang City, Vietnam

Abstract. This project presents the development and implementation of a specialized
voice assistant tailored to support visually impaired individuals operating Windows PC
systems called Beacon. The voice assistant is designed to enhance accessibility by
facilitating seamless interaction with integrated functions, including music playback,
news consumption, receiving usage instructions, and volume control, catering to the
unique needs of visually impaired users. Notably, the assistant is equipped with support
for the Vietnamese language and employs a user intention recognition model based on
PhoBERT, and FastAPI, contributing to the accurate interpretation of user commands.
Evaluation through testing demonstrates an impressive accuracy rate of up to 90% for
the provided test data, showcasing the efficacy of the voice assistant in empowering
visually impaired users to navigate and utilize Windows PC functionalities
independently and efficiently.

Keywords; Voice Assistant, Visually Impaired, Windows PC Accessibility, User
Intention Recognition, PhoBERT-based Interaction

1. Introduction

According to statistics, Vietnam currently has about 2 million blind and visually
impaired people. Among them, one-third are impoverished and cannot afford treatment
to regain their sight.

Additionally, here are some other pieces of information about the visually impaired
in Vietnam:

* Corresponding author: windev.thang@gmail.com
Received:; Accepted:; Published:

This is an Open Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the
original work is properly cited.

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 952

JIITA

• Over 7% of the population aged 2 and older (about 6.2 million people) have
visual impairments.

• 13% of the population (almost 12 million people) live in families with visually
impaired members.

• This rate is expected to increase with the aging population trend.

• Households with disabled members, including the visually impaired, tend to be
poorer, and visually impaired children are at a higher risk of not attending school
compared to their peers.

• Employment opportunities for the visually impaired are also lower compared to
those without visual impairments.

• The most common disabilities in children are related to social and psychological
aspects, posing significant barriers to the social integration of visually impaired
children.

Especially in today's adolescent generation, the increased use of electronic devices
(smartphones, laptops, etc.) has led to a decline in vision. Is there any solution to help
visually impaired individuals reduce their dependence on staring at screens?

To address these issues, we are researching and developing a voice assistant for
Windows. With this voice assistant, visually impaired individuals won't need to rely too
much on the screen for basic tasks such as searching for information online or reading
the news. This helps visually impaired individuals integrate more with the world of
technology and reduces the risk of serious eye conditions.

In this project, we have conceptualized the research and development of a voice
assistant, analyzing, and implementing actions on a Windows PC to assist visually
impaired individuals in easily using basic functions such as searching for information,
listening to music, and reading news. The assistant is named Beacon, suggesting its role
as a guide or signal, capable of helping users navigate around the computer interface.
The assistant performs key functions, including: Executing actions according to the
user's requests (reading news, listening to music, etc.), Collecting user conversations -
ensuring necessary security measures - to enhance the accuracy of responses to users,
Predicting behavior and providing recommendations to users based on their chat history
with the assistant.

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 953

JIITA

2. Related Work

In the era of artificial intelligence, many models have been developed for various
purposes such as Multimodal, Computer Vision, Natural Language Processing, Audio,
Tabular, and Reinforcement Learning.

PhoBERT [1] is specifically designed for Vietnamese text and is based on the
RoBERTa architecture. It was trained on a large corpus of 20GB of Wikipedia and news
text, achieving state-of-the-art results on several natural language processing tasks for
Vietnamese. These tasks include part-of-speech tagging, parsing, named entity
recognition, and natural language inference. PhoBERT comes in two versions: the “base”
version with 135 million parameters and the “large” version with 370 million parameters.
Researchers and practitioners can utilize PhoBERT in libraries such as FAIRSeq or
Transformers for tasks like text classification, question answering, sentiment analysis,
and more. Its availability allows us to leverage existing knowledge and build upon it,
rather than starting from scratch.

This system serves as a prime example. By using PhoBERT as its base model, we
can efficiently train a new model on our specific data – in this case, for the purpose of
intent classification. Think of it like building a specialized tool on top of a powerful
engine. PhoBERT provides the core understanding of Vietnamese language, while our
data shapes it to expertly handle the nuances of our unique intent classification problem.
This not only saves time and resources but also ensures the new model inherits the solid
foundation of PhoBERT's knowledge.

Table I. COMPARE BEACON WITH OTHER VOICE ASSISTANT

Features BEACON CORTANA PIGO
News aggregation X
Date, Weather, Chate X X
Play Music X X
Interesting commands X X
Timer X
Control browser by speech X X
Commands for setting up on the computer. X X
Technical guidance X X
Read newspapers X X X
Vietnamese language support X X
Longer Support X X

Similar to advancements in the development of artificial intelligence, the field of
voice assistants on Windows has witnessed significant growth and diversification. Let's
delve into some notable contributions:

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 954

JIITA

Pioneering Efforts: The emergence of Cortana led to the initial efforts, marking
Microsoft's first foray into personal assistants. Cortana seamlessly integrated with
Windows, providing basic functions like setting reminders, making calls, and web
searches. However, limitations in its feature set and language support hindered
widespread adoption.

Rise of Third-Party Solutions: Recognizing the increasing demand for voice-
controlled experiences, third-party solutions stepped in. Popular options like Alexa and
Google Assistant became accessible through dedicated apps, offering users expanded
capabilities such as smart home control, streaming music, and personalized news sources.
Despite providing greater flexibility, these assistants lacked deep integration with the
Windows ecosystem.

Emerging Trends and Future Prospects: Several compelling trends are shaping
the future of voice assistants on Windows.

Skill Development: Open platforms like Open Assistant SDK enable developers to
create custom skills, allowing for tailored voice experiences to align with specific
workflows and industries.

Despite the abundance of voice assistants in the current market, there is still a lack
of assistants with the capability for personalization and optimal support for the visually
impaired in general, and specifically for Vietnamese.

To address this issue, we have built and developed Beacon, a voice assistant on
Windows PC that not only personalizes user behavior but also aims to provide maximum
support for the visually impaired.

3. Proposed Solutions

A high-level overview of the process by which we built a user intent classification
system using machine learning:

1) Collect Data: Gather a diverse dataset containing examples of user queries or
sentences along with their corresponding intent labels. Ensure that the data covers
various scenarios and user intents you want to classify (e.g., play music, read news,
customer support)

2) Data Preprocessing: Clean and normalize text data by removing irrelevant
characters, converting to lowercase, and standardizing punctuation. Segment text into
appropriate units (words, sentences). Utilize Underthesea for Vietnamese-specific
preprocessing tasks like tokenization, normalization, and named entity recognition.

3) Model Selection: Consider both traditional (rule-based) and machine learning
approaches based on data size and complexity. For machine learning, choose a

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 955

JIITA

Transformer-based architecture like PhoBERT for Vietnamese text. Explore pre-
trained models like PhoBERT-base or PhoBERT-large based on computational
resources and desired accuracy.

4) Model Training: Split data into training, validation, and test sets. Fine-tune the
pre-trained PhoBERT model on your labeled dataset using an appropriate optimizer
like Adam. Utilize transfer learning to leverage PhoBERT's knowledge while adapting
to specific intent categories.

5) Evaluate the Model: Calculate metrics like accuracy, precision, recall, and F1-
score for each intent on the validation set. Employ visualization techniques like
confusion matrices to analyze model performance and identify areas for improvement.

6) Deploy the Model: Deloy User Intent Classification Model with Hugging Face
as an API service.

7) Continue to Improve: Collect user feedback and analyze model performance in
production. Retrain the model with new data or refine hyperparameters regularly.
Explore advanced techniques like active learning to gather more informative data and
improve model accuracy over time.

We are building an application on Windows PC called Beacon with the feature of
converting speech into commands, thereby helping users perform tasks they want
through voice, such as reading news, listening to music, and adjusting the volume. The
assistant has a speech output, starting from receiving the user's speech using Azure's
speech-to-text service. In the next step, the system uses the converted text to perform
analysis using a pre-trained model and then returns the corresponding action to be
executed. Finally, the assistant uses the returned result to process and perform the
requested action.

The solution will assist visually impaired individuals in using a computer through
voice without the need for direct manipulation. The proposed solution is to build a
system called "Beacon - Voice Assistant for Visually Impaired on Windows PC," as
illustrated in Figure 1.

Figure 1. System context diagram

The system context diagram of Beacon comprises two entities: Visually impaired
users and Administrators. Among them, visually impaired users can utilize the
application through voice with functions such as reading news (vnexpress.vn), listening

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 956

JIITA

to music (yewtu.be - an ad-free YouTube clone), and requesting system usage
instructions (to assist users in easily using the system without requiring technological
knowledge). Administrators are responsible for managing data, including user data,
application versions, and corresponding application usage guides.

The overall architecture of our proposed solution, along with associated components
and connector, is illustrated in Figure 2.

Figure 2. Component and connector of Beacon

Users can interact on two platforms: web application and desktop application. Users
access the web to download the app link and then can use the app on the computer. Web
application calls API application to get the latest version of the app and desktop
application calls API application to use the services. API application interacts with the
database and manipulates data in the database. Our project uses MongoDB to easily map
the actual object to the entity in the DB and make it easy to manipulate the data in the
database.

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 957

JIITA

Table II. COMPONENT AND CONNECTOR ROLES AND RESPONSIBILITIES

Role Responsibilities

User
Access to the website call beacon.id.vn and download app then use app on the
desktop.

Web Application
Contains information about us, contact section, app download link and call API
to get the latest version.

Desktop Application
Communicate directly with the user and call the API application to use the
corresponding service that the API application provides.

API Application
Contains middleware to check the valid authentication and provide the
corresponding service from user's request, contains all the services of the
application, interacts with database to manipulate data

Database Store all the data of the application
The main components are described in more detail below.

B. C&C view based on Web Application

Figure 3. Component and connector of Beacon – Web Application

When users access the website via beacon.id.vn, they will see an interface landing
page including sections about us, contact, and download. When the user clicks download,

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 958

JIITA

the web application calls the API to the server to get the version along with the latest
download link for the application.

When users access the admin page with admin rights, they can use the functions of
app version management, user information statistics, labeling, and user conversation
management.

Table III. COMPONENT AND CONNECTOR ROLES AND RESPONSIBILITIES

Role Responsibilities

Home Page
Displays information describing Beacon Voice Assistant clearly, providing
an easy-to-understand and easy-to-use download method

Manage App Service
Show details about app versions, including information like version number,
description, new features, and ensure that only authorized people can
download or edit information.

App Version Contains information about the application's table sessions
User Data Page Provide a list of user information and details of those users
Dashboard Page Provide content visual data on users, usage for administrators
Conversation Service Provide information about a user’s chat history
Authentication Service Provide a method for user verification and authentication
User Data Service Provide information about users
Usage Summary Service Provide an overview of application usage

API Application
An application to provide an application programming interface and use of
functions and services, helping to connect and interact

C. C&C view based on Desktop Application

Figure 4. Component and connector of Beacon – Web Application

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 959

JIITA

When the user starts the laptop, the beacon application will automatically connect to
the laptop at the same time and the user can use voice to communicate directly with the
application. When the user wants to communicate, the user will say the request they want
the application to perform. When the user speaks, the application will receive the voice
and convert that voice into text for the application to process through the function called
"Speech to text". Users will choose 1 of 2 services: listening to music or reading news.
Once the user has selected and the request is sent, the application will process it through
the "Handle input from speech" function and then return the results from the text that the
user wants through the pc speakers - "Text to speech".

Table IV. COMPONENT AND CONNECTOR ROLES AND RESPONSIBILITIES

Role Responsibilities
User Articulate their request, using Interactive Voice Assistant.

API Application
Contain All APIs of application, Processes User’s request and forward to the
corresponding service.

Speech To Text Convert Speech from user into Text for application to process.

Handle Input
Process Input from user, initiates the request and forward request to the
corresponding controller to process after receiving processing from Intent
Recognition.

Conversation Log Contains a log of previous uses of the application

Intent Recognition
Intent Processing, Command Execution / Functionality, send result to Handle
Input

Read News Controller
Contain methods about Read News to processing request from user when the
request is sent here

Listen To Music
Controller

Contain methods about Listen to Music to processing request from user when
the request is sent here

Control Volume
Controller

Adjust the volume for the application

Handle Exception Provides a method for control Exception when execution flow is misaligned
Text To Speech Convert Text into Speech

4. Experiment Results

Beacons are deployed according to the business requirements and system
architecture described in Figure 5.

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 960

JIITA

Figure 5. Deployment Architecture of Beacon

The software system consists of several components that interact with each other to
provide various services to the users. The system is hosted on an Ubuntu 22.04 LTS
server, which has 8GB of memory, 40GB of hard disk space, and an Intel Xeon processor.
The server also has Docker Engine and Docker Compose installed, which allow the
system to run multiple containers in a coordinated manner.

The containers include NextJS, Nginx, Certbot, and FastAPI, each with a specific
role and responsibility. NextJS is a React framework that handles the front-end
development and rendering of the web pages. Nginx is a web server that serves static
files and proxies requests to other containers. Certbot is a tool that automates the process
of obtaining and renewing SSL certificates for secure communication. FastAPI is a
Python framework that handles the back-end logic and API endpoints of the system.

The system also uses MongoDB as the database, which stores data in a structured
format that can be accessed by other components. MongoDB is connected to the Ubuntu
server via ODM, which is an object-document mapper that simplifies the interaction
between Python objects and MongoDB documents.

The system is protected by a firewall, which implements TCP/IP rules to safeguard
against unauthorized access while allowing necessary communications. The firewall is
positioned centrally in the architecture, connecting all major components. The system
communicates with external applications or browsers using HTTP/S and JSON protocols.

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 961

JIITA

The desktop applications and the browser are the interfaces that users interact with to
access the services provided by the system.

Table V. COMPONENT AND CONNECTOR ROLES AND RESPONSIBILITIES

Role Responsibilities

User Ubuntu 22.04 LTS Server
Hosts the core system packages and configurations necessary for
running containers.

Containers (Docker Engine,
Docker Compose, NextJS,
Nginx, Certbot, FastAPI)

Each container has a specific role in ensuring that applications are
deployed efficiently and securely

MongoDB
Stores data in a structured format accessible by other components of
the system

Firewall
Implements TCP/IP rules to safeguard against unauthorized access
while allowing necessary communications

Desktop Application/Browser
Interfaces that users interact with to access services provided by the
server

The implementation of intent recognition and classification based on the PhoBERT
model is carried out through the following six steps during the experiment phase.

Step 1: Data Preparation (Phase: Data Exploration & Preprocessing)

• Imports libraries and dependencies.

• Reads training and test data from CSV files.

• Defines labels and converts them to IDs.

• Tokenizes sentences using UnderTheSea library.

• Creates a datasets.DatasetDict for easier handling.

train_df = pd.read_csv("pat_to_train_data")

test_df = pd.read_csv("path_to_valid_data")

labels = train_df["label"].unique().tolist()

label2id = {label: i for i, label in enumerate(labels)}

id2label = {i: label for i, label in enumerate(labels)}

def tokenize(sentence):

 return word_tokenize(sentence, format="text")

train_df["text"] = train_df["text"].apply(tokenize)

test_df["text"] = test_df["text"].apply(tokenize)

train_df["label"] = train_df["label"].map(label2id)

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 962

JIITA

test_df["label"] = test_df["label"].map(label2id)

imdb = datasets.DatasetDict(

 {

 "train": datasets.Dataset.from_pandas(train_df),

 "test": datasets.Dataset.from_pandas(test_df),

 }

)

Step 2: Classification Function (Phase: Feature Engineering & Modeling)

• Defines a classification function that uses UnderTheSea to classify a sentence.

• This could be considered a simple classification phase, but its interaction with
the next step blurs the line.

def classification(sentence):

 result = {

 "text": sentence,

 "predcict": classify(sentence)

 }

 return result

Step 3: Preprocessing & Tokenization (Phase: Feature Engineering &
Preprocessing)

• Defines a preprocess_function that uses a provided tokenizer (assumed to be
defined elsewhere) to preprocess text data.

• This transforms data into model-specific features.

def preprocess_function(content):

 return tokenizer(content["text"], truncation=True)

tokenized_imdb = imdb.map(preprocess_function, batched=True)

Step 4: Data Collation & Tokenization (Phase: Model Training & Evaluation
Preparation)

• Defines a data_collator using the same tokenizer for padding and batching data.

• This prepares data for efficient model training and evaluation.

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 963

JIITA

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

Step 5: Evaluation Metric Definition (Phase: Model Evaluation Planning)

• Defines an accuracy metric using the evaluate library.

• This outlines how model performance will be measured.

accuracy = evaluate.load("accuracy")

def compute_metrics(eval_pred):

 logits, labels = eval_pred

 predictions = np.argmax(logits, axis=1)

 return accuracy.compute(predictions=predictions, references=labels)

Step 6: Model Training & Evaluation (Phase: Model Training & Evaluation)

• Loads a pre-trained model vinai/phobert-base-v2 for intent classification.

• Defines training arguments with:

1) learning_rate (float): This determines the step size the optimizer takes when
updating model parameters during training. Lower values make training more
stable but slower, while higher values can be faster but risk instability. Here, it's
set to 5e-5 (which is 0.00005).
2) per_device_train_batch_size (int): This defines the number of data samples
fed to the model in each training step on each device (GPU or TPU). Setting it to
16 means processing 16 samples per step on each device.
3) per_device_eval_batch_size (int): Similar to per_device_train_batch_size,
but determines the batch size for evaluation (e.g., validation). Here, it's also set to
16.
4) num_train_epochs (int): This specifies the number of times the entire training
dataset will be passed through the model during training. In this case, it's set to
10 epochs.
5) weight_decay (float): This is a regularization technique that penalizes large
model weights during training, discouraging overfitting. Higher values encourage
smaller weights and potentially reduce overfitting, but lower values can improve
performance. Here, it's set to 0.01.
6) evaluation_strategy (str): This controls how often the model is evaluated
during training. "epoch" means the model is evaluated after each training epoch,
while other options like "steps" or "wall_time" trigger evaluation based on the
number of training steps or elapsed time.
7) save_strategy (str): This defines when to save the model during training.
"epoch" saves the model after each epoch, while other options like "no" avoid
saving during training but might save at the end.

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 964

JIITA

8) load_best_model_at_end (bool): If True, this loads the model with the best
performance on the evaluation metric during training, even if it was saved during
an earlier epoch. This helps select the best performing model.

• Creates a Trainer object for training and evaluation:

1) model: it's the pre-trained vinai/phobert-base-v2 model for sequence
classification.
2) args: This is a TrainingArguments object containing hyperparameters and
training settings like learning rate, epochs, etc.
3) train_dataset: This defines the training dataset that will be used to train the
model. Here, it's the "train" part of tokenized_imdb dataset obtained after
preprocessing.
4) eval_dataset: This defines the evaluation dataset that will be used to assess
model performance during training. It's the "test" part of tokenized_imdb dataset.
5) data_collator: This specifies a function that prepares batches of data for the
model during training and evaluation. Defined this object earlier as data_collator.
6) tokenizer: This specifies the tokenizer used to pre-process the text data into
numerical tokens. Might have defined this object elsewhere and are passing it here.
7) compute_metrics: This is a function that calculates evaluation metrics (e.g.,
accuracy) on the model predictions. Defined this function earlier as
compute_metrics.

• Trains the model on the prepared data and evaluates it on the test set.

• Saves the best performing model.

model = AutoModelForSequenceClassification.from_pretrained(

 "vinai/phobert-base-v2", cache_dir='cache', num_labels=22, id2label=id2label,
label2id=label2id

).to("cuda")

training_args = TrainingArguments(

 output_dir="model",

 learning_rate=5e-5,

 per_device_train_batch_size=16,

 per_device_eval_batch_size=16,

 num_train_epochs=10,

 weight_decay=0.01,

 evaluation_strategy="epoch",

 save_strategy="epoch",

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 965

JIITA

 load_best_model_at_end=True,

 # push_to_hub=True,

 overwrite_output_dir=True

)

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=tokenized_imdb["train"],

 eval_dataset=tokenized_imdb["test"],

 data_collator=data_collator,

 tokenizer=tokenizer,

 compute_metrics=compute_metrics

)

trainer.train()

trainer.evaluate()

trainer.save_model("model")

Figure 6. Train model

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 966

JIITA

A. Results
The test results are based on the model publicly available at:

https://huggingface.co/yensubldg/model

Figure 7. Test with play_music label

Figure 8. Test with last_news label

Table VI. THE EXPERIMENT RESULTS

Title Result
Average time per response at-tempt Approximately 0.3s per request
Average accuracy 90% overall

 Truong Quoc Thang, Pham Quoc Bao, Nguyen Van Vi, Than Thi Thao, Nguyen Trieu Tien, Tran Kim Sanh 967

JIITA

5. Conclusion

The application successfully converts and executes user voice commands related to
functions such as listening to music, reading the news, and providing usage instructions.
It accurately identifies common commands from users with 22 researched and labeled
categories, such as play_music, read_news, last_news, breaking_news, etc. The
achieved accuracy is over 90% based on the validation dataset.

References

[1] Nguyen, Dat Quoc, and Anh Tuan Nguyen, Findings of the Association for Computational
Linguistics: EMNLP 2020. Viet Nam, pp. 1037–1042, 2020.

[2] S. M. Felix, S. Kumar and A. Veeramuthu, A Smart Personal AI Assistant for Visually
Impaired People, 2018 2nd International Conference on Trends in Electronics and
Informatics (ICOEI), Tirunelveli, India, pp. 1245-1250, 2018.

	2. Related Work
	3. Proposed Solutions
	1) Collect Data: Gather a diverse dataset containing examples of user queries or sentences along with their corresponding intent labels. Ensure that the data covers various scenarios and user intents you want to classify (e.g., play music, read news, ...
	2) Data Preprocessing: Clean and normalize text data by removing irrelevant characters, converting to lowercase, and standardizing punctuation. Segment text into appropriate units (words, sentences). Utilize Underthesea for Vietnamese-specific preproc...
	3) Model Selection: Consider both traditional (rule-based) and machine learning approaches based on data size and complexity. For machine learning, choose a Transformer-based architecture like PhoBERT for Vietnamese text. Explore pre-trained models li...
	4) Model Training: Split data into training, validation, and test sets. Fine-tune the pre-trained PhoBERT model on your labeled dataset using an appropriate optimizer like Adam. Utilize transfer learning to leverage PhoBERT's knowledge while adapting...
	5) Evaluate the Model: Calculate metrics like accuracy, precision, recall, and F1-score for each intent on the validation set. Employ visualization techniques like confusion matrices to analyze model performance and identify areas for improvement.
	6) Deploy the Model: Deloy User Intent Classification Model with Hugging Face as an API service.
	7) Continue to Improve: Collect user feedback and analyze model performance in production. Retrain the model with new data or refine hyperparameters regularly. Explore advanced techniques like active learning to gather more informative data and improv...
	B. C&C view based on Web Application
	C. C&C view based on Desktop Application

	4. Experiment Results
	1) learning_rate (float): This determines the step size the optimizer takes when updating model parameters during training. Lower values make training more stable but slower, while higher values can be faster but risk instability. Here, it's set to 5e...
	2) per_device_train_batch_size (int): This defines the number of data samples fed to the model in each training step on each device (GPU or TPU). Setting it to 16 means processing 16 samples per step on each device.
	3) per_device_eval_batch_size (int): Similar to per_device_train_batch_size, but determines the batch size for evaluation (e.g., validation). Here, it's also set to 16.
	4) num_train_epochs (int): This specifies the number of times the entire training dataset will be passed through the model during training. In this case, it's set to 10 epochs.
	5) weight_decay (float): This is a regularization technique that penalizes large model weights during training, discouraging overfitting. Higher values encourage smaller weights and potentially reduce overfitting, but lower values can improve performa...
	6) evaluation_strategy (str): This controls how often the model is evaluated during training. "epoch" means the model is evaluated after each training epoch, while other options like "steps" or "wall_time" trigger evaluation based on the number of tra...
	7) save_strategy (str): This defines when to save the model during training. "epoch" saves the model after each epoch, while other options like "no" avoid saving during training but might save at the end.
	8) load_best_model_at_end (bool): If True, this loads the model with the best performance on the evaluation metric during training, even if it was saved during an earlier epoch. This helps select the best performing model.
	1) model: it's the pre-trained vinai/phobert-base-v2 model for sequence classification.
	2) args: This is a TrainingArguments object containing hyperparameters and training settings like learning rate, epochs, etc.
	3) train_dataset: This defines the training dataset that will be used to train the model. Here, it's the "train" part of tokenized_imdb dataset obtained after preprocessing.
	4) eval_dataset: This defines the evaluation dataset that will be used to assess model performance during training. It's the "test" part of tokenized_imdb dataset.
	5) data_collator: This specifies a function that prepares batches of data for the model during training and evaluation. Defined this object earlier as data_collator.
	6) tokenizer: This specifies the tokenizer used to pre-process the text data into numerical tokens. Might have defined this object elsewhere and are passing it here.
	7) compute_metrics: This is a function that calculates evaluation metrics (e.g., accuracy) on the model predictions. Defined this function earlier as compute_metrics.
	A. Results

	5. Conclusion
	References

