Journal of Industrial Information Technology and Application ISSN{Online): 2586-0852
Vol.9 No. 1

The Price of Convenience: Empirical
Runtime Study on Type Casting Across
Programming Paradigms

Ashton Curry’”, Rane Murphy ¥, Ka Lok Man 2, Yuxuan Zhao ¥,
and Kamran Siddigue !

DDept. of Computer Science and Engineering, University of Alaska Anchorage
ZDepartment of Computing, School of Advanced Technology, Xi'an Jiaotong-
Liverpool University
¥School of Al and Advanced Computing, Xi'an Jiaotong-Liverpool University

Abstract. This study examines the runtime impact of implicit vs. explicit type casting
across five programming languages (Python, JavaScript, C#, C++, and Java).
Experiments reveal significant differences, with compiled languages generally
performing faster, highlighting trade-offs between developer convenience and runtime
efficiency.

Keywords; Programming languages; Runtime Efficiency; Paradigms

Cite this paper as - Ashton Curry, Rane Murphy, Ka Lok Man, Yuxuan Zhao, and Kamran Siddique
(2025) “The Price of Convenience: Empirical Runtime Study on Type Casting Across Programming
Paradigms”, Journal of Industrial Information Technology and Application, Vol. 9. No. 1. pp. 1032 -
1038

*Corresponding author : ksiddique(@alaska.edu
Received: Nov. 11,2024 Accepted: Jan. 8 2025 Published: Mar. 31, 2025

This is an Open Access article distributed under the terms of the Creative Commons Afttribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Copyright©2017. Journal of Industrial Information Technology and Application (JIITA)

Ashton Curry, Rane Murphy, Ka Lok Man, Yuxuan Zhao, and Kamran Siddique 1033

1. Introduction

Modern programming languages increasingly aim to resemble natural languages,
with many adopting dynamics typing to let developers declare variables without
specifying data types. While this convenience shortens development time, it raises
questions about its impact on program performance. The ongoing debate in the
computer science community [2] explores static and dynamic type systems, comparing
their performance at runtime and during program creation. Static typing performs type
checking at compile time, while dynamic typing defers it to runtime, affecting

Iroraing an A Antants
uci

e (2T Althanah ctatin amd dunameis_tusad losonaocas ara
VLIULL [] AAVUIUUELD Stdlliv dllud Jylidaliie=iy poed alizudEes div

t
compared at runtime in [1], the impact of conveniences like implicit type casting
remains less explored. As a subset of dynamic typing, implicit declaration allows the
language to determine and adjust data types based on context throughout the program.
This paper presents an experimental analysis of implicit and explicit type casting
across five programming languages: interpretive (Python, JavaScript), compiled (C#,
C++), and a middle-man language. It tests the hypothesis that explicit variable
declaration, though less programmer-friendly, leads to faster runtimes, with compiled
languages performing the best.

2. Research Methods

A. General Description

The experimental setup involved 8 different small programs. Their purposes will be
summed up in this list:

. Explicit Declaration: declare a variable to its specific type (e.g. ‘int x’).

. Implicit Declaration: declare a variable implicitly (e.g. ‘x =1").

. Explicit Float Addition: add two explicitly declared float variables together.

. Mixed Float Addition: add an implicit and explicit variable together.

. Explicit Integer Addition: add two explicitly declared integer variables together.
. Mixed Integer Addition: add an implicit and explicit integer together.

. Addition of explicit like-types then mixed types: two floats are added together,
followed by two integers, then an integer and a float are added together

JIITA, Vol.9 no.1 pp.1032-1038 (2025), DOI: 10.22664/1SI'TA.2025.9.1.1032

Ashton Curry, Rane Murphy, Ka Lok Man, Yuxuan Zhao, and Kamran Siddique 1034

+ Addition of explicit mixed types then like-types: a float and an integer are added
together, followed by another float and integer added together. Then, the two
results are added together.

Each experiment involved running a code loop for 1,000 iterations to gather
sufficient data, with the mean calculated for cross-language and experiment
comparisons. Mixed and implicit additions/declarations represent runtimes for implicit
type casting, while explicit additions/declarations represent explicit type casting. The
tinal two experiments measured whether runtime is faster for explicit addition (same
variable types) or implicit addition (different variable types) using explicit type
declarations.

B. Implementation Details

C#, C++, Java, Python, and JavaScript accomplished running each experiment
using their own ways of implicit and explicit declaration. Python and JavaScript
default to implicit declaration so a different approach was used to simulate both
languages’ explicit declaration. The implementation details for each programming
language will be described.

C# supports both implicit and explicit variable type declarations but imposes
restrictions, such as requiring separate statements for implicitly typed variables and
explicit casts for adding floating-point values to integers. Runtime was measured with
the Stopwatch class, and data was exported to Excel. C++ offers similar type

declaration sunnort hut with fewer rectrictiong. allowinoe mare flexihilitv, Timino wag
aec:aration su PPOIT DUl Wit IeWer resiriciions, anowing more Lexionily. iming was

captured with the clock function and results exported similarly.

Java balances features of C# and C++. Like C#, it disallows compound implicit
declarations but permits adding floats to integers with a warning. Runtime was
recorded using nanoTime and exported to Excel. Python required workarounds for
explicit type declarations using float() and int(), with timing handled by timeit and data
stored in Excel using pandas. Similarly, JavaScript uses libraries like
performanceObserver for timing and ExcellS for data export, with explicit typing
achieved through Number() and parselnt().

3. Experimental Results or Performance Evaluation
Figure 1. shows the mean runtime comparison between C and C#. For all C

experiments, each runtime is falling within the range of 2.21 ns to 2.96 ns. The mean
runtimes for C++ are from 1.93 ns to 2.77 ns. The experiment categories of explicit vs

JIITA, Vol.9 no.1 pp.1032-1038 (2025), DOI: 10.22664/1SI'TA.2025.9.1.1032

Ashton Curry, Rane Murphy, Ka Lok Man, Yuxuan Zhao, and Kamran Siddique 1035

implicit declaration and explicit vs mixed integer arithmetic showed negligible
difference in mean runtime. Explicit vs mixed float arithmetic and likewise then mixed
vs mixed then likewise type addition showed a notable difference in mean runtime.
Both languages ran similarly in the nanosecond magnitude range. C++ has a mean
runtime lower than that of C in every experimental category. Java exhibited distinct
runtime behavior during the experiment, with spikes and subsequent drops to lower
values over two periods in 1,000 iterations, necessitating a different analysis approach.
Stable windows (trials 1-55 and 75-175) were identified for analysis, with values
becoming negligible after trial 235. Figure 2 shows that early Java trials generally
contribute to higher mean runtimes, except for the implicit declaration experiment and
mixed type addition experiment, where trials 75-175 had lower or similar mean
runtimes. Figure 3 illustrates Python’s and Javascript mean runtimes. Python’s range is
from 0.59 us to 1.05 ps. Differences in mean runtime were negligible for some
categories (e.g., mixed float arithmetic), but explicit vs. implicit declaration and mixed
integer arithmetic showed notable variations. JavaScript’s mean runtimes vary from
151.80 ps to 1716.23 ps, with notable differences in some categories, such as explicit
vs. implicit declaration. Therefore, Python consistently outperformed JavaScript,
operating in the microsecond range, except for JavaScript’s explicit declaration, which
shifted to the millisecond range.

Arithmetic Addition Addition

Experiments

Figure 1. C# vs. C++ Mean Runtimes

JIITA, Vol.9 no.1 pp.1032-1038 (2025), DOI: 10.22664/1SI'TA.2025.9.1.1032

Ashton Curry, Rane Murphy, Ka Lok Man, Yuxuan Zhao, and Kamran Siddique 1036

Mean Runtime of Java Experiments, Varying Trial Subsets

Experiments

Figure 2. Mean Runtime of Java Experiments, Varying Trial Subsets

Prdkan Mone Buntlean sn laaBaslnt Mane Bl

Experiments

Figure 3. Python vs. JavaScript Mean Runtimes

Figure 4. shows all languages compared against one another by experiment. At a
glance, we can confirm part of our hypothesis that compiled languages would have
faster runtimes. The compiled languages enjoy a mean runtime several orders of
magnitude faster than the closest interpreted language, Python. Furthermore, Python
had a mean runtime several orders of magnitude faster even than JavaScript.
Additionally, we can see that the compiled languages all have a very close mean
runtime within one order of magnitude with one another.

JIITA, Vol.9 no.1 pp.1032-1038 (2025), DOI: 10.22664/1SI'TA.2025.9.1.1032

Ashton Curry, Rane Murphy, Ka Lok Man, Yuxuan Zhao, and Kamran Siddique 1037

rrace.l anAanana Maan Runtima Camnariean

Experiments

Figure 4. Mean Runtime of Java Experiments

4. Conclusion

This study investigated runtimes of implicit and explicit type casting experiments
across various programming languages and paradigms. The findings reveal substantial
differences in runtime performance, with compiled languages like C# and C++
outperforming interpretive languages such as Python and JavaScript. Java, as a hybrid
language, demonstrated unexpected and inconclusive results. These results confirm the
hypothesis that explicit type declarations, though less convenient during development,
generally enhance runtime efficiency, highlighting the trade-offs between coding
simplicity and execution performance. For performance-critical tasks, explicit casting
in statically-typed languages is recommended, while dynamic typing suits projects
prioritizing flexibility. Future research could explore newer languages, updated
versions, cognitive impacts, and real-world applications to validate these findings and
adapt to evolving technologies.

In conclusion, while this study has shed light on important aspects of type casting
in programming, the dynamic nature of programming languages and evolving compiler

tachnnlooies palle for future reg
wonneio

sare o oa d chauld
an 1S5 Cauns 10T TUlure researcil. ey < O SnoWG

gners
remain adaptable, continually balancing convenience and performance based on the
latest empirical evidence.

JIITA, Vol.9 no.1 pp.1032-1038 (2025), DOI: 10.22664/1SI'TA.2025.9.1.1032

Ashton Curry, Rane Murphy, Ka Lok Man, Yuxuan Zhao, and Kamran Siddique 1038

References

[1] S. Hanenberg, “An experiment about static and dynamic type systems doubts about the
positive impact of static type systems on development time,” Paper presented at the, vol.
45, no. 10, pp. 22-35, Oct. 1, 2010.

2] L R. Harlin, H. Washizaki, and Y. Fukazawa, “Impact of using a statictype system in
computer programming,” Paper presented at the, pp. 116-119, 2017,

[3] B.C. Pierce, “Types and Programming Languages,” 1st ed., Cambridge: MIT Press, 2002.
Retrieved from https://iecexplore.ieee.org/servlet/ opac?bknumber=6267321.

JIITA, Vol.9 no.1 pp.1032-1038 (2025), DOI: 10.22664/1SI'TA.2025.9.1.1032

