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Abstract. This study presents a data-driven neural network surrogate model for 

predicting assembly-wise power distribution changes in the core of an i-SMR. The 

neural network was trained using a dataset generated by ASTRA, a nodal diffusion code. 

A convolutional neural network (CNN)-based architecture was designed to predict 

power distributions at target load, based on current power distributions, ramp rate, 

depletion time, current load and target load value. The model achieved a mean relative 

error of 0.833% and a peak power prediction error of 0.768%, demonstrating its ability 

to effectively predicting power distributions under varying load. 
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1.   Introduction 

Various physics simulation approaches based on artificial neural networks have 

been proposed. A common approach is data-driven supervised learning, which is the 
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major technique used with neural networks. Another well-known technique is the 

Physics-Informed Neural Network (PINN), introduced by M. Raissi [1], which employs 

the differential equation as loss calculation functions in the network. Several 

methodologies have been developed to solve time-variant state transition problem using 

neural networks. These models have been used in a variety of applications, including 

weather forecasting, collision problems, and thermos-dynamics. 

Several approaches have been developed to adapt to predict time variant state 

transition, such as qualitative simulation, the roll-out technique, and time series models.  

First, qualitative simulation [2] has been used to predict state transitions, especially 

in cases when precise quantitative input data is difficult to obtain. However, this 

approach has a disadvantage in that it struggles to predict the state with exact quantities. 

Additionally, unlike the original approach, which describes state transitions using 

predicates, the AI-based qualitative simulation approach is closer to the roll-out 

technique, utilizing AI for sequential state predictions.  

Second, the roll-out technique uses current state information to predict the next state 

at a future time step. The projected next state is then fed back into the neural network 

to predict the following time step, and this process repeats, hence the name “roll-out 

technique.” For example, in weather forecasting, Google’s research team developed 

'GraphCast’[3], which predicts the weather 6 hours in advance by combining weather 

data from the previous 6 hours with current data.  

Last, time series models use sequential data to predict future values based on past 

observations, capturing temporal patterns and dependencies. Techniques like sliding 

windows are applied to analyze trends over time, such as in weather forecasting or stock 

price prediction, where past data is essential for forecasting upcoming conditions.  

In this paper, we employ the roll-out technique to predict the next time step’s core 

power distribution based on the given current power distribution and the target load 

value to be achieved. 

2.   Research Methods 

A. Data Preparation 

The dataset for training the neural network was generated using the nodal diffusion 

design code, ASTRA, with design features referenced from i-SMR. The in-core loading 

pattern (LP) was fixed, and its layout is shown in Figure 1. In total, five fuel batches 

were used in LP, each with fuel rods containing 4% U-235 concentration. The batches 
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differ in the number of gadolinium burnable absorbers. 

ASTRA's restart function was employed to continue the calculations from the initial 

input file. The subsequent file maintained the same input conditions as the initial file, 

except for load value and depletion time. This subsequent file was then used to calculate 

the power distribution at the target load. 

 

Figure  1.   Loading Pattern 

 

The initial file contains the assigned initial load value, and the data generation 

algorithm determine the next load value using the selected ramp rate and depletion time 

value. For example, with a negative ramp rate of 5% per minute, an initial load value 

of 100%, and a depletion time of 10 minutes, the next file's load value becomes 50%. 

There were five ramp rate options: 1%, 2%, 3%, 4%, and 5% per minute, with 

depletion time expressed as an integer value in minutes. For ramp rates, both ramp-up 

and ramp-down cases were considered. When constructing the dataset, a value of -1 

was multiplied for ramp-down cases (e.g., -4%/min for rampdown). The load limit was 

constrained between 100% and 20%. The xenon option was set to transient mode 

because the power changes occurred over a short period, and xenon had a substantial 
impact on power distribution. A total of 14,513 data points were generated. 

The input data for the neural network model includes the 2D assembly-wise power 

distribution (with a symmetric quadrant layout) at the current time step, ramp rate, 

depletion time, current load, and target load. The target data for the neural network to 

predict is the 2D assembly-wise power distribution at the next time step. 
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B. Neural Network Model Configuration 

The neural network consisted of convolutional neural network (CNN) [4] layers and 

a fully connected layer (referred to as Dense Layer in Figure 2). The main input took 

assembly-wise power distribution at the current time step, while the sub-input received 

a 1x4 shaped array of ramp rate, depletion time, current load, and target load. These 

two inputs were then combined during the training process, and the network predicted 

the final target power distribution. The structure of the neural network is shown in 

Figure 2. 

     Various techniques have been developed to improve the performance of CNN, and 

the residual block[5] is one of them. In this structure, the input tensor is passed through 

two convolutional layers with different kernel sizes, and their outputs are then 

combined before being returned. The structure of the residual block can be seen in 

Figure 3.  

 

Figure  2.   Neural Network Model Configuration 

 

 

Figure  3.   Residual Block 
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3.   Results 

Table 1.   Model Prediction Errors 

 Relative Error (%) 

Mean Error 0.833% 

Max Error 4.95% 

Mean Error (Peak Power) 0.768% 

Max Error (Peak Power) 2.84% 

 

The total number of data samples was 14,513, with 12,407 used for training, and 

1,452 used to evaluate neural network performance. The relative error was obtained by 

comparing the 1,452 values predicted by the model to the test data. For peak power, the 

error was measured between the highest power value at the lattice point in the original 

assembly-wise power distribution and the value predicted by the neural network. 

4.   Conclusion 

This study validated a neural network-based methodology for predicting power 

distribution at target load values. First, our previous study successfully predicted pin-

wise 2D power distributions and assembly-wise 3D power distributions. By combining 

the methodology from previous study with the current results, more comprehensive 

core power distributions could be obtained. Second, incorporating additional factors 

such as control rod positions, xenon distributions, and the location and number of 

burnable poison rods during training could significantly improve prediction accuracy. 

Finally, future research will focus on establishing and validating a methodology that 

provides complicate load variation histories based on operational cycles as input, rather 

than the simple ramping up or down used in this study. 
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